Reputation: 43
I'm new to Deep Learning. I have randomly generated datasets with following shape (5,4,4). It's something like
[[[1 2 3 4] [4 5 6 7] [7 8 9 10]]]
I don't know why is it giving problem related to dimensions
My Keras code is given below
X_train=np.random.randint(0,100,size=(5,4,4))
Y_train=np.random.rand(5,1)
X_valid=np.random.randint(0,100,size=(2,4,4)
Y_valid=np.random.rand(2,1)
def create_model():
nb_filters=2
nb_conv=2
model=Sequential()
model.add(Convolution2d(nb_filters,nb_conv,padding='same',input_shape=(4,4)
model.add(Activation('relu'))
****Other layers****
enter code here
model.add(Dense(1)
model.add(Activation('linear')
model.compile(loss='mean_squared_error', optimizer=Adadelta())
return model
model=create_model()
model.fit(X_train,Y_train, batch_size=2,nb_epoch=50,verbos=1, validation_data=(X_valid,Y_valid)
Upvotes: 0
Views: 67
Reputation: 1624
Your input data is missing the channel dimension (see docs)
Upvotes: 2