Reputation: 408
Given below is a table :
A NUMBER B NUMBER
7042967611 9999574081
12320 9999574081
9999574081 9810256463
9999574081 9716551924
9716551924 9999574081
9999574081 8130945859
This was originally an excel sheet which has been converted into a dataframe. I wish to swap some of the elements such that the A number column has only 9999574081. Therefore the output should look like :
A NUMBER B NUMBER
9999574081 7042967611
9999574081 12320
9999574081 9810256463
9999574081 9716551924
9999574081 9716551924
9999574081 8130945859
This is the code I have used :
for i in list(df['A NUMBER']):
j=0
if i!= 9999574081:
temp = df['B NUMBER'][j]
df['B NUMBER'][j] = i
df['A NUMBER'][j] = temp
j+=1
However, I am not getting the desired result. Please help me out. Thanks:)
Upvotes: 3
Views: 622
Reputation: 862611
Use DataFrame.loc
for swap only rows matched boolean mask, values
is necessary for avoid align index values:
m = df['A NUMBER'] != 9999574081
df.loc[m, ['A NUMBER','B NUMBER']] = df.loc[m, ['B NUMBER','A NUMBER']].values
Another solution with numpy.where
:
df['B NUMBER'] = np.where(df['A NUMBER'] != 9999574081, df['A NUMBER'], df['B NUMBER'])
df['A NUMBER'] = 9999574081
print (df)
A NUMBER B NUMBER
0 9999574081 7042967611
1 9999574081 12320
2 9999574081 9810256463
3 9999574081 9716551924
4 9999574081 9716551924
5 9999574081 8130945859
Upvotes: 1