Reputation: 11
In Python,
including null values
import pandas as pd
html = 'https://en.wikipedia.org/wiki/Visa_requirements_for_Norwegian_citizens'
df = pd.read_html(html, header=0)
df= df[1]
df.to_csv('norway.csv)
Upvotes: 1
Views: 1378
Reputation: 862641
I believe you need replace missing values if necessary by fillna
, convert values to strings with astype
and apply
with join
. Get Series
, so for one column DataFrame
add to_frame
with transposing:
df = df.fillna(' ').astype(str).apply('|'.join).to_frame().T
print (df)
Country Allowed_stay Visa_requirement
0 Albania|Afganistan|Andorra 30|30|60 visa free| | visa free
Or use list comprehension with DataFrame
constructor:
L = ['|'.join(df[x].fillna(' ').astype(str)) for x in df]
df1 = pd.DataFrame([L], columns=df.columns)
print (df1)
Country Allowed_stay Visa_requirement
0 Albania|Afganistan|Andorra 30|30|60 visa free| | visa free
Upvotes: 1
Reputation: 1637
df = pandas.DataFrame([
{'A' : 'x', 'B' : 2, 'C' : None},
{'A' : None, 'B' : 2, 'C' : 1},
{'A' : 'y', 'B' : None, 'C' : None},
])
pandas.DataFrame(df.fillna('').apply(lambda x: '|'.join(x.astype(str)), axis = 0)).transpose()
Upvotes: 1