Reputation: 965
I've searched around and can't seem to figure out how to solve this problem.
I have a data set of subjects and I'd like to subset all rows following an event taking place in a different column. Here is an example of what the data set looks like:
subject <- letters[rep(seq(from = 1, to = 5), each = 10)]
value1 <- rnorm(n = length(subject), mean = 20, sd = 5)
value2 <- rnorm(n = length(subject), mean = 30, sd = 10)
tag <- rep(NA, n = length(subject))
df <- data.frame(subject, value1, value2, tag)
# add random events
df[6,4] <- "event"
df[16,4] <- "event"
df[24,4] <- "event"
df[39,4] <- "event"
df[43,4] <- "event"
head(df, 20)
subject value1 value2 tag
1 a 29.48322 28.50112 <NA>
2 a 26.83034 32.61494 <NA>
3 a 19.03148 38.66233 <NA>
4 a 19.97549 36.09613 <NA>
5 a 22.04944 26.80911 <NA>
6 a 16.67589 37.07147 event
7 a 14.25538 32.94055 <NA>
8 a 18.29705 24.17948 <NA>
9 a 14.26047 23.94956 <NA>
10 a 23.91977 39.76018 <NA>
11 b 20.64587 38.93593 <NA>
12 b 20.72713 14.29013 <NA>
13 b 17.55487 27.63619 <NA>
14 b 14.18344 40.30682 <NA>
15 b 11.47055 22.01550 <NA>
16 b 24.60832 38.49901 event
17 b 15.10552 32.08878 <NA>
18 b 23.21466 28.17392 <NA>
19 b 20.59442 34.18078 <NA>
20 b 21.19128 33.50000 <NA>
Is there a way to subset out all rows starting at "event" and all rows after "event" by subject?
Upvotes: 0
Views: 49
Reputation: 10233
Yes, this is an easy solution in base R:
indx <- unlist(lapply(which(df$tag == "event"), "+", 0:1))
df[indx, ]
# subject value1 value2 tag
#6 a 25.996706 15.65917 event
#7 a 20.336984 35.03734 <NA>
#16 b 9.825914 25.34336 event
#17 b 24.344257 30.15755 <NA>
#24 c 18.586266 33.82119 event
#25 c 25.879272 52.43784 <NA>
#39 d 24.366653 25.03767 event
#40 d 19.870183 36.61909 <NA>
#43 e 23.706029 43.46765 event
#44 e 15.091674 29.45431 <NA>
Here which
returns all the row indicies for "event", and the lapply
adds the vector 0:1
(i.e. 0 and 1) to all each of these indicies giving the 'event-row' and the row after.
There are multiple other ways to get it as well:
# Alternative 1
indx <- apply(expand.grid(which(df$tag == "event"), 0:1), 1, sum)
# Alternative 2
eindx <- which(df$tag == "event")
indx <- c(eindx, eindx + 1)
These indicies come in a different order, but one can always sort
them.
To solve it by-subject, you can check that this the addition of one keeps it within the subject, and exclude if not:
eindx <- which(df$tag == "event")
not_eq <- which(df$subject[eindx] != df$subject[eindx+1])
indx <- sort(c(eindx, setdiff(eindx, not_eq) + 1))
df[indx, ]
or you can wrap these approaches into an function and utilize the by
or split
functions:
get_event <- function(f) {
eindx <- which(f$tag == "event")
indx <- sort(c(eindx, eindx + 1))
f[indx, ]
}
res <- do.call(rbind, by(df, subject, get_event))
or
res <- do.call(rbind, lapply(split(df, subject), get_event))
Upvotes: 1
Reputation: 20473
Depending on what you want to do after the subset, this will probably work:
library(tidyverse)
df %>%
group_by(subject) %>%
mutate(event_grp = cumsum(!is.na(tag))) %>%
group_by(subject, event_grp) %>%
summarise(
avg_val1 = mean(value1),
avg_val2 = mean(value2)
)
# subject event_grp avg_val1 avg_val2
# <fct> <int> <dbl> <dbl>
# 1 a 0 22.7 38.6
# 2 a 1 20.5 30.5
# 3 b 0 21.1 25.0
# 4 b 1 21.4 21.2
# 5 c 0 19.5 35.8
# 6 c 1 18.6 23.9
# 7 d 0 18.7 31.1
# 8 d 1 19.4 42.0
# 9 e 0 18.5 25.7
# 10 e 1 20.7 30.2
For the subset, you'll just want:
df %>%
group_by(subject) %>%
mutate(event_grp = cumsum(!is.na(tag))) %>%
filter(event_grp >= 1)
Upvotes: 3