Reputation: 13
I'm looking for a way in R where I can select the max(col1) where col2 is not NA?
Example datafame named df1
#df1
Year col1 col2
2016 4 NA # has NA
2016 2 NA # has NA
2016 1 3 # this is the max for 2016
2017 3 NA
2017 2 3 # this is the max for 2017
2017 1 3
2018 2 4 # this is the max for 2018
2018 1 NA
I would like the new dataset to only return
Year col1 col2
2016 1 3
2017 2 3
2018 2 4
If any one can help, it would be very appreciated?
Upvotes: 1
Views: 114
Reputation: 145765
Using dplyr
:
library(dplyr)
df1 %>% filter(!is.na(col2)) %>%
group_by(year) %>%
arrange(desc(col1)) %>%
slice(1)
Using data.table
:
library(data.table)
setDT(df1)
df1[!is.na(col2), .SD[which.max(col1)], by = Year]
This works in a fresh R session:
library(data.table)
dt = fread("Year col1 col2
2016 4 NA
2016 2 NA
2016 1 3
2017 3 NA
2017 2 3
2017 1 3
2018 2 4
2018 1 NA")
dt[!is.na(col2), .SD[which.max(col1)], by = Year]
# Year col1 col2
# 1: 2016 1 3
# 2: 2017 2 3
# 3: 2018 2 4
Upvotes: 1
Reputation: 26343
In base R
out <- na.omit(df1)
merge(aggregate(col1 ~ Year, out, max), out) # thanks to Rui
# Year col1 col2
#1 2016 1 3
#2 2017 2 3
#3 2018 2 4
Upvotes: 4