Reputation: 189
I am learning more about numpy and need help creating an numpy array from multiple lists. Say I have 3 lists,
a = [1, 1, 1]
b = [2, 2, 2]
c = [3, 3, 3]
How can I create a new numpy array with each list as a column? Meaning that the new array would be [[1, 2, 3], [1, 2, 3], [1, 2, 3]]
. I know how to do this by looping through the lists but I am not sure if there is an easier way to accomplish this. The numpy concatenate function seems to be close but I couldn't figure out how to get it to do what I'm after.
Thanks
Upvotes: 4
Views: 17968
Reputation: 231665
No need to use numpy
. Python zip
does a nice job:
In [606]: a = [1, 1, 1]
...: b = [2, 2, 2]
...: c = [3, 3, 3]
In [607]: abc = list(zip(a,b,c))
In [608]: abc
Out[608]: [(1, 2, 3), (1, 2, 3), (1, 2, 3)]
But if your heart is set on using numpy
, a good way is to make a 2d array, and transpose it:
In [609]: np.array((a,b,c))
Out[609]:
array([[1, 1, 1],
[2, 2, 2],
[3, 3, 3]])
In [610]: np.array((a,b,c)).T
Out[610]:
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
Others show how to do this with stack
and column_stack
, but underlying these is a concatenate
. In one way or other they turn the lists into 2d arrays that can be joined on axis=1, e.g.
In [616]: np.concatenate([np.array(x)[:,None] for x in [a,b,c]], axis=1)
Out[616]:
array([[1, 2, 3],
[1, 2, 3],
[1, 2, 3]])
Upvotes: 3