Reputation: 56966
This concerns the new JavaScript BigInt type, as supported in Chrome and Node v10.4
Both the following lines throw an error:
Math.sqrt(9n)
Math.sqrt(BigInt(9))
Error is:
Cannot convert a BigInt value to a number
How do I get the square root of a BigInt in JavaScript? TIA
Upvotes: 15
Views: 10214
Reputation: 11
To calculate the square root of a number, Newton's method is one of the fastest. Moreover, the more accurate the initial approximation of the root, the faster it will return the result. Below is an example of a function that calculates the square root quite efficiently (please note that the function is for javaScript's BigInt):
function sqrt(N) {
if(N < 0n) return Math.sqrt(-1);
let aprx;
if(N < 9007199254740991n) {
aprx = BigInt(Math.floor(Math.sqrt(Number(N))));
if(aprx**2n > N) aprx--;
return aprx;
};
let base32 = N.toString(32),
len = base32.length*5 - 5 + parseInt(base32[0], 32).toString(2).length;
base32 = null;
function approx(a1, len) {
if(len < 53) {
let aprx = BigInt(Math.floor(Math.sqrt(Number(a1))));
if(aprx**2n > a1) aprx--;
return aprx;
}
let base = Math.floor(len/2) - len%2;
if(base%2 == 1) base--;
let b1 = a1>>BigInt(base),
b0 = BigInt.asUintN(base, a1),
r1 = approx(b1, len - base),
r0 = (((b1 - r1**2n)<<BigInt(base)) + b0)/(2n*r1);
return (r1<<BigInt(base/2)) + (r0>>BigInt(base/2));
}
aprx = approx(N, len);
if(aprx**2n > N) aprx--;
return aprx; }
Upvotes: 1
Reputation: 92377
Here is more general solution for n-th root
/**
* Calculate n-th root of val
* Parameters:
* k: is n-th (default sqare root)
* limit: is maximum number of iterations (default: -1 no limit)
*/
function rootNth(val, k=2n, limit=-1) {
let o = 0n; // old approx value
let x = val;
while(x**k!==k && x!==o && --limit) {
o=x;
x = ((k-1n)*x + val/x**(k-1n))/k;
if(limit<0 && (x-o)**2n == 1n) break;
}
if ((val-(x-1n)**k)**2n < (val-x**k)**2n) x=x-1n;
if ((val-(x+1n)**k)**2n < (val-x**k)**2n) x=x+1n;
return x;
}
let v = 1000000n;
console.log(`root^3 form ${v} = ${rootNth(v,3n)}` );
Upvotes: 3
Reputation: 13673
There is an npm library bigint-isqrt, seem to work ok. It returns the floor value if there is no integer root.
const sqrt = require('bigint-isqrt');
> sqrt(1023n);
31n
> sqrt(1024n);
32n
Though it's still a mystery for me how magic numbers like value < 16n
and 1n << 52n
in it's implementation help finding a square root. Judging from a PR it's some sort of an approximation heuristic, I wonder whether it's more efficient than algorithms in other answers...
Upvotes: 3
Reputation: 2296
From here: https://golb.hplar.ch/2018/09/javascript-bigint.html
function sqrt(value) {
if (value < 0n) {
throw 'square root of negative numbers is not supported'
}
if (value < 2n) {
return value;
}
function newtonIteration(n, x0) {
const x1 = ((n / x0) + x0) >> 1n;
if (x0 === x1 || x0 === (x1 - 1n)) {
return x0;
}
return newtonIteration(n, x1);
}
return newtonIteration(value, 1n);
}
sqrt(BigInt(9))
Upvotes: 18