Reputation: 197
I am working in a dataframe in Pandas that looks like this.
Identifier datetime
0 AL011851 00:00:00
1 AL011851 06:00:00
2 Al011851 12:00:00
This is my code so far:
import pandas as pd
hurricane_df = pd.read_csv("hurdat2.csv",parse_dates=['datetime'])
hurricane_df['datetime'] = pd.to_timedelta(hurricane_df['datetime'].dt.strftime('%H:%M:%S'))
hurricane_df
grouped = hurricane_df.groupby('datetime').size()
grouped
What I did was convert the datetime column to a timedelta to get the hours. I want to get the size of the datetime column but I want just hours like 1:00, 2:00, 3:00, etc. but I get minute intervals as well like 1:15 and 2:45.
Any way to just display the hour? Thank you.
Upvotes: 1
Views: 95
Reputation: 5876
You can use pandas.Timestamp.round
with Series.dt
shortcut:
df['datetime'] = df['datetime'].dt.round('h')
So
... datetime
01:15:00
02:45:00
becomes
... datetime
01:00:00
03:00:00
Upvotes: 1
Reputation: 7597
df = pd.DataFrame({'Identifier':['AL011851','AL011851','AL011851'],'datetime': ["2018-12-08 16:35:23","2018-12-08 14:20:45", "2018-12-08 11:45:00"]})
df['datetime'] = pd.to_datetime(df['datetime'])
df
Identifier datetime
0 AL011851 2018-12-08 16:35:23
1 AL011851 2018-12-08 14:20:45
2 AL011851 2018-12-08 11:45:00
# Rounds to nearest hour
def roundHour(t):
return (t.replace(second=0, microsecond=0, minute=0, hour=t.hour)
+timedelta(hours=t.minute//30))
df.datetime=df.datetime.map(lambda t: roundHour(t)) # Step 1: Round to nearest hour
df.datetime=df.datetime.map(lambda t: t.strftime('%H:%M')) # Step 2: Remove seconds
df
Identifier datetime
0 AL011851 17:00
1 AL011851 14:00
2 AL011851 12:00
Upvotes: 0