Reputation: 113
I am working in a pandas dataframe and I am trying to get the distance from the longitude and latitude for each point for every identifier.
Here's the dataframe currently:
Identifier num_pts latitude longitude
0 AL011851 3 28.0 -94.8
1 AL011851 3 28.0 -95.4
2 AL011851 3 28.1 -96.0
3 AL021851 2 22.2 -97.6
4 AL021851 2 12.0 -60.0
I know I have to use the Haversine's Distance Formula but I'm not sure how to incorporate it using my data.
import numpy as np
def haversine(lon1, lat1, lon2, lat2, earth_radius=6367):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = earth_radius * c
return km
Here should be my end result as calculated on paper using just lat and longitude:
Identifier num_pts latitude longitude distance
0 AL011851 3 28.0 -94.8 NaN
1 AL011851 3 28.0 -95.4 58.870532
2 AL011851 3 28.1 -96.0 58.870532
3 AL021851 2 22.2 -97.6
4 AL021851 2 12.0 -60.0
EDIT: I need to calculate the distance between consecutive points like 0 and 1, and 2, and it has to be grouped by the identifier to make sure that the points do not come from different identifiers so when theres a new identifier like AL021851 it resets and only computes the points in that identifier
Upvotes: 1
Views: 903
Reputation: 4378
from io import StringIO
import pandas as pd
# Example data
df = pd.read_fwf(StringIO("""
Identifier num_pts latitude longitude
AL011851 3 28.0 -94.8
AL011851 3 28.0 -95.4
AL011851 3 28.1 -96.0
AL021851 2 22.2 -97.6
AL021851 2 12.0 -60.0
"""), header=1)
# Provided function
import numpy as np
def haversine(lon1, lat1, lon2, lat2, earth_radius=6367):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
All args must be of equal length.
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = earth_radius * c
return km
# Use pandas shift to place prior values on each row, within a grouped dataframe
dfg = df.groupby("Identifier")
df ['p_latitude'] = dfg['latitude'].shift(1)
df ['p_longitude'] = dfg['longitude'].shift(1)
# Assign to a new column - use pandas dataframe apply to invoke for each row
df['distance'] = df[['p_latitude', 'p_longitude', 'latitude','longitude']].apply(lambda x: haversine(x[1], x[0], x[3], x[2]), axis=1)
print(df)
# Identifier num_pts latitude longitude p_latitude p_longitude distance
#0 AL011851 3 28.0 -94.8 NaN NaN NaN
#1 AL011851 3 28.0 -95.4 28.0 -94.8 58.870532
#2 AL011851 3 28.1 -96.0 28.0 -95.4 59.883283
#3 AL021851 2 22.2 -97.6 NaN NaN NaN
#4 AL021851 2 12.0 -60.0 22.2 -97.6 4138.535287
Upvotes: 1