Reputation: 67221
This question was asked of me in an interview. How can we convert a BT such that every node in it has a value which is the sum of its child nodes?
Upvotes: 2
Views: 7022
Reputation: 41
Here is the code for the sum problem. It works i have tested it.
int sum_of_left_n_right_nodes_4m_root(tree* local_tree){
int left_sum = 0;
int right_sum = 0;
if(NULL ==local_tree){
return 0;
}
if((NULL == local_tree->left)&&(NULL == local_tree->right)){
return 0;
}
sum_of_left_n_right_nodes(local_tree->left);
sum_of_left_n_right_nodes(local_tree->right);
if(NULL != local_tree->left)
left_sum = local_tree->left->data +
local_tree->left->sum;
if(NULL != local_tree->right)
right_sum = local_tree->right->data + \
local_tree->right->sum;
local_tree->sum= right_sum + left_sum;
}
Upvotes: 1
Reputation: 361402
Here is a solution that can help you: (the link explains it with tree-diagrams)
Convert an arbitrary Binary Tree to a tree that holds Children Sum Property
/* This function changes a tree to to hold children sum
property */
void convertTree(struct node* node)
{
int left_data = 0, right_data = 0, diff;
/* If tree is empty or it's a leaf node then
return true */
if(node == NULL ||
(node->left == NULL && node->right == NULL))
return;
else
{
/* convert left and right subtrees */
convertTree(node->left);
convertTree(node->right);
/* If left child is not present ten 0 is used
as data of left child */
if(node->left != NULL)
left_data = node->left->data;
/* If right child is not present ten 0 is used
as data of right child */
if(node->right != NULL)
right_data = node->right->data;
/* get the diff of node's data and children sum */
diff = left_data + right_data - node->data;
/* If node's data is smaller then increment node's data
by diff */
if(diff > 0)
node->data = node->data + diff;
/* THIS IS TRICKY --> If node's data is greater then increment left
subtree by diff */
if(diff < 0)
increment(node->left, -diff);
}
}
See the link to see the complete solution and explanation!
Upvotes: 2
Reputation: 2394
Well as Charlie pointed out, you can simply store the sum of respective subtree sizes in each inner node, and have leaves supply constant values at construction (or always implicitly use 1, if you're only interested in the number of leaves in a tree).
This is commonly known as an Augmented Search Tree.
What's interesting is that through this kind of augmentation, i.e., storing additional per-node data, you can derive other kinds of aggregate information for items in the tree as well. Any information you can express as a monoid you can store in an augmented tree, and for this, you'll need to specify:
So besides subtree sizes, you can also express stuff like:
(This concept is rather reminiscent of heaps, or more explicitly treaps, which store random priorities with inner nodes for probabilistic balancing. It's also quite commonly described in the context of Finger Trees, although these are not the same thing.)
If you also provide a neutral element for your monoid, you can then walk down such a monoid-augmented search tree to retrieve specific elements (e.g., "find me the 5th leaf" for your size example; "give me the leaf with the highest priority").
Uhm, anyways. Might have gotten carried away a bit there.. I just happen to find that topic quite interesting. :)
Upvotes: 2
Reputation: 9523
With a recursive function you can do so by making the value of each node equal to the sum of the values of it's childs under condition that it has two children, or the value of it's single child if it has one child, and if it has no childs (leaf), then this is the breaking condition, the value never changes.
Upvotes: 0
Reputation: 112366
Give each node an attached value. When you construct the tree, the value of a leaf is set; construct interior nodes to have the value leaf1.value + leaf2.value
.
If you can change the values of the leaf nodes, then the operation has to go "back up" the tree updating the sum values.
This will be a lot easier if you either include back links in the nodes, or implement the tree as a "threaded tree".
Upvotes: 3