Reputation: 2879
I'm trying to fill pandas
dataframe columns in a for loop. The column name is parametric and assigned by loop value. This is my code:
for k in range (-1, -4, -1):
df_orj = pd.read_csv('something.csv', sep= '\t')
df_train = df_orj.head(11900)
df_test = df_orj.tail(720)
SHIFT = k
df_train.trend = df_train.trend.shift(SHIFT)
df_train = df_train.dropna()
df_test.trend = df_test.trend.shift(SHIFT)
df_test = df_test.dropna()
drop_list = some_list
df_out = df_test[['date','price']]
df_out.index = np.arange(0, len(df_out)) # start index from 0
df_out["pred-1"] = np.nan
df_out["pred-2"] = np.nan
df_out["pred-3"] = np.nan
df_train.drop(drop_list, 1, inplace = True )
df_test.drop(drop_list, 1, inplace = True )
# some processes here
rf = RandomForestClassifier(n_estimators = 10)
rf.fit(X_train,y_train)
y_pred = rf.predict(X_test)
print("accuracy score: " , rf.score(X_test, y_test))
X_test2 = sc.transform(df_test.drop('trend', axis=1))
y_test2 = df_test['trend'].values
y_pred2 = rf.predict(X_test2)
print("accuracy score: ",rf.score(X_test2, y_test2))
name = "pred{0}".format(k)
for i in range (0, y_test2.size):
df_out[name][i] = y_pred2[i]
df_out.head(20)
And this is my output:
time_period_start price_open pred-1 pred-2 pred-3
697 2018-10-02T02:00:00.0000000Z 86.80 NaN NaN 1.0
698 2018-10-02T03:00:00.0000000Z 86.65 NaN NaN 1.0
699 2018-10-02T04:00:00.0000000Z 86.32 NaN NaN 1.0
As you can see, only pred-3
is filled. How can I fill all 3 pre-defined columns?
Upvotes: 0
Views: 1793
Reputation: 28650
Your setting those 3 columns as nulls in each loop, so you’re losing those values as it iterates. Either move those initializing columns to before the loop, or you could just initialize with variables with:
Change out
df_out["pred-1"] = np.nan
df_out["pred-2"] = np.nan
df_out["pred-3"] = np.nan
To just initialize the individual column as it loops
name = "pred{0}".format(k)
df_out[name] = np.nan
So full code:
for k in range (-1, -4, -1):
df_orj = pd.read_csv('something.csv', sep= '\t')
df_train = df_orj.head(11900)
df_test = df_orj.tail(720)
SHIFT = k
df_train.trend = df_train.trend.shift(SHIFT)
df_train = df_train.dropna()
df_test.trend = df_test.trend.shift(SHIFT)
df_test = df_test.dropna()
drop_list = some_list
df_out = df_test[['date','price']]
df_out.index = np.arange(0, len(df_out)) # start index from 0
name = "pred{0}".format(k)
df_out[name] = np.nan
df_train.drop(drop_list, 1, inplace = True )
df_test.drop(drop_list, 1, inplace = True )
# some processes here
rf = RandomForestClassifier(n_estimators = 10)
rf.fit(X_train,y_train)
y_pred = rf.predict(X_test)
print("accuracy score: " , rf.score(X_test, y_test))
X_test2 = sc.transform(df_test.drop('trend', axis=1))
y_test2 = df_test['trend'].values
y_pred2 = rf.predict(X_test2)
print("accuracy score: ",rf.score(X_test2, y_test2))
for i in range (0, y_test2.size):
df_out[name][i] = y_pred2[i]
df_out.head(20)
Upvotes: 1
Reputation: 318
If i am understanding correctly, then your issue is that you are getting pred-3 filled only where as other two are nan. It's because your df_out is in the loop and you are getting the results for last iteration of loop. You should define it outside the loop so that you information won't get lost for the other two.
Upvotes: 2