Reputation: 4080
I am trying to remove the outliers from my dataframe containing x
and y
variables grouped by variable cond
.
I have created a function to remove the outliers based on a boxplot statistics, and returning df
without outliers. The function works well when applied for a raw data. However, if applied on grouped data, the function does not work and I got back an error:
Error in mutate_impl(.data, dots) :
Evaluation error: argument "df" is missing, with no default.
Please, how can I correct my function to take vectors df$x
and df$y
as arguments, and correctly get rid of outliers by group?
My dummy data:
set.seed(955)
# Make some noisily increasing data
dat <- data.frame(cond = rep(c("A", "B"), each = 22),
xvar = c(1:10+rnorm(20,sd=3), 40, 10, 11:20+rnorm(20,sd=3), 85, 115),
yvar = c(1:10+rnorm(20,sd=3), 200, 60, 11:20+rnorm(20,sd=3), 35, 200))
removeOutliers<-function(df, ...) {
# first, identify the outliers and store them in a vector
outliers.x<-boxplot.stats(df$x)$out
outliers.y<-boxplot.stats(df$y)$out
# remove the outliers from the original data
df<-df[-which(df$x %in% outliers.x),]
df[-which(df$y %in% outliers.y),]
}
# REmove outliers (try if function works)
removeOutliers(dat)
# Apply the function to group
# Not working!!!
dat_noOutliers<- dat %>%
group_by(cond) %>%
mutate(removeOutliers)
I have found this function to remove the outliers from a vector data . However, I would like to remove outliers from both df$x
and df$y
vectors in a dataframe.
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
(remove outliers by group in R)
Upvotes: 3
Views: 3048
Reputation: 1141
You may just filter your data:
library(tidyverse)
set.seed(955)
dat <- data.frame(cond = rep(c("A", "B"), each = 22),
xvar = c(1:10+rnorm(20,sd=3), 40, 10, 11:20+rnorm(20,sd=3), 85, 115),
yvar = c(1:10+rnorm(20,sd=3), 200, 60, 11:20+rnorm(20,sd=3), 35, 200))
dat %>%
ggplot(aes(x = xvar, y = yvar)) +
geom_point() +
geom_smooth(method = lm) +
ggthemes::theme_hc()
dat %>%
group_by(cond) %>%
filter(!xvar %in% boxplot.stats(xvar)$out) %>%
filter(!yvar %in% boxplot.stats(yvar)$out) %>%
ggplot(aes(x = xvar, y = yvar)) +
geom_point() +
geom_smooth(method = lm) +
ggthemes::theme_hc()
Created on 2018-12-11 by the reprex package (v0.2.1)
Upvotes: 3
Reputation: 21709
Since you are applying this function to entire df, you should instead use mutate_all
. Do:
dat_noOutliers<- dat %>%
group_by(cond) %>%
mutate_all(remove_outliers)
Upvotes: 5