Reputation: 703
My desktop has 2 gpu installed: 1080 and 1080Ti nvidia-smi shows that gpu-0 is 1080 and gpu-1 is 1080Ti
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 00000000:01:00.0 Off | N/A |
| 26% 57C P2 53W / 215W | 696MiB / 8119MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 108... Off | 00000000:02:00.0 Off | N/A |
| 55% 70C P2 204W / 250W | 8641MiB / 11178MiB | 28% Default |
+-------------------------------+----------------------+----------------------+
Right now both tensorflow and mxnet use reversed order: 1080ti when I specify gpu=0 and 1080 when I specify gpu=1.
Why is it happening and how to synchronize tensorflow and mxnet gpu order with nvidia-smi gpu order?
Code snippets for mxnet:
mod = mx.mod.Module(symbol, label_names=None, context=mx.gpu(0))
For tensorflow I use environment variable
CUDA_VISIBLE_DEVICES="0"
Upvotes: 3
Views: 221
Reputation: 866
Set
export CUDA_DEVICE_ORDER=PCI_BUS_ID
.
Also see this question
Upvotes: 2