Reputation: 425
I have a few questions concerning Randomized grid search in a Random Forest Regression Model. My parameter grid looks like this:
random_grid = {'bootstrap': [True, False],
'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, None],
'max_features': ['auto', 'sqrt'],
'min_samples_leaf': [1, 2, 4],
'min_samples_split': [2, 5, 10],
'n_estimators': [130, 180, 230]}
and my code for the RandomizedSearchCV like this:
# Use the random grid to search for best hyperparameters
# First create the base model to tune
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor()
# Random search of parameters, using 3 fold cross validation,
# search across 100 different combinations, and use all available cores
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs = -1)
# Fit the random search model
rf_random.fit(X_1, Y)
is there any way to calculate the Root mean square at each parameter set? This would be more interesting to me as the R^2 score? If I now want to get the best parameter set, as printed underneath i would also use the lowest RMSE score. Is there any way to do that?
rf_random.best_params_
rf_random.best_score_
rf_random.best_estimator_
thank you, R
Upvotes: 7
Views: 23577
Reputation: 357
Maybe this will help you.
`
rf_grid = {"n_estimators": np.arange(10, 100, 10),<br>
"max_depth": [None, 3, 5, 10],<br>
"min_samples_split": np.arange(2, 20, 2),<br>
"min_samples_leaf": np.arange(1, 20, 2),<br>
"max_features": [0.5, 1, "sqrt", "auto"],
"max_samples": [10000]}
# Instantiate RandomizedSearchCV model
rs_model = RandomizedSearchCV(RandomForestRegressor(n_jobs=-1, random_state=42),
param_distributions=rf_grid,
n_iter=2,
cv=5,
verbose=True)
# fit
rs_model.fit(X_train, y_train)`
Upvotes: 0
Reputation: 16966
If you want to create a dataframe for the results of each cv, use the following.
Set return_train_score
as True
if you need the results for training dataset as well.
rf_random = RandomizedSearchCV(estimator = rf, return_train_score = True)
import pandas as pd
df = pd.DataFrame(rf_random.cv_results_)
Upvotes: 0
Reputation: 434
Add the 'scoring'-parameter to RandomizedSearchCV.
RandomizedSearchCV(scoring="neg_mean_squared_error", ...
Alternative options can be found in the docs
With this, you can print the RMSE for each parameter set, along with the parameter set:
cv_results = rf_random.cv_results_
for mean_score, params in zip(cv_results["mean_test_score"], cvres["params"]):
print(np.sqrt(-mean_score), params)
Upvotes: 8