Reputation: 15
In my ggplot2 code below, I want to show the formula for a linear-regression fit on my plot with geom_text
, but I get unwanted c
before the values of a
and b
, how do I prevent this?
p <- ggplot(data=Algae, aes(x=a254, y=DOC))+
geom_point(color="blue",stat="identity") +
geom_smooth(method="lm",se=FALSE,color="red",formula=y~x)
model.lm <- lm(DOC~a254, data=Algae)
l <- list(a=format(coef(model.lm)[1], digits=4),
b=format(coef(model.lm)[2], digits=4),
r2=format(summary(model.lm)$r.squared, digits=4),
p=format(summary(model.lm)$coefficients[2,4], digits=4))
eq <- substitute(italic(DOC) == a - b %*% italic(a254)~","~italic(R)^2~"="~r2~",
"~italic(P)~"="~p, l)
p1 <- p + geom_text(aes(x =6, y = 0, label = as.character(as.expression(eq))), parse = TRUE)
p1
Upvotes: 0
Views: 3077
Reputation: 72813
The reason for this is that you first format()
your data into character format and then try to calculate with strings. You could solve the problem this way:
First, it is more convenient to transform your list into a data.frame
, using:
d <- as.data.frame(l)
The values should be converted back to numeric, since you yet want to do arithmetics inside the formula:
d[] <- lapply(d, function(x) as.numeric(as.character(x)))
Then it should work fine:
eq <- substitute(italic(Sepal.Length) == a - b %*% italic(Petal.Length)~","~italic(R)^2~"="~r2~",
"~italic(P)~"="~p, d)
p + geom_text(aes(x =5, y = 0, label = as.character(as.expression(eq))), parse = TRUE)
You could also use annotate()
to add the formula to the plot, which might look a little nicer:
p + annotate('text', 7, 4,
label=paste("italic(Sepal.Length)==", d$a, "~-~", d$b, "~x~",
"~italic(Petal.Length)~';'~italic(r)^2==", d$r2,
"~italic(P)==", d$p),
parse=TRUE,
hjust=1, size=3.5)
Yielding:
Data:
library(ggplot2)
p <- ggplot(data=iris, aes(x=Petal.Length, y=Sepal.Length)) +
geom_point(color="blue", stat="identity") +
geom_smooth(method="lm", se=FALSE, color="red", formula=y~x)
model.lm <- lm(Sepal.Length ~ Petal.Length, data=iris)
l <- list(a=format(coef(model.lm)[1], digits=4),
b=format(coef(model.lm)[2], digits=4),
r2=format(summary(model.lm)$r.squared, digits=4),
p=format(summary(model.lm)$coefficients[2, 4], digits=4))
Upvotes: 1