Reputation: 175
I have a question. If it is possible to add rotation to my algorithm. I mean, for example if I want to go from (0,0) to (0,1) first of all i need to rotate and then go to that field. I don't have any ideas how to do that. My implementation of algorithm A-start it's like this
import numpy
from heapq import *
def heuristic(a, b):
return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2
def astar(array, start, goal):
neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
close_set = set()
came_from = {}
gscore = {start: 0}
fscore = {start: heuristic(start, goal)}
oheap = []
heappush(oheap, (fscore[start], start))
while oheap:
current = heappop(oheap)[1]
if current == goal:
data = []
while current in came_from:
data.append(current)
current = came_from[current]
return data
close_set.add(current)
for i, j in neighbors:
neighbor = current[0] + i, current[1] + j
tentative_g_score = gscore[current] + heuristic(current, neighbor)
if 0 <= neighbor[0] < array.shape[0]:
if 0 <= neighbor[1] < array.shape[1]:
if array[neighbor[0]][neighbor[1]] == 1:
continue
else:
# array bound y walls
continue
else:
# array bound x walls
continue
if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
continue
if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1] for i in oheap]:
came_from[neighbor] = current
gscore[neighbor] = tentative_g_score
fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
heappush(oheap, (fscore[neighbor], neighbor))
return False
'''Here is an example of using my algo with a numpy array, astar(array, start, destination) astar function returns a list of points (shortest path)'''
nmap = numpy.array([
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
print (astar(nmap, (0, 0), (10, 13)))
Upvotes: 2
Views: 634
Reputation: 2361
This isn't an algorithm problem. It's a data structure problem.
Representing a node as (0, 0) only makes sense when position is all you care about. If rotation is a concern, then the direction you are facing is also important. For instance, you might encode the different directions as 1,2,3,4 and then each node in the graph can represent something like (0, 0, 2) or (0, 0, 3). Now edges between different nodes will either be via movement (same direction but different location) or via rotation (same location but different direction).
The algorithm (apart from neighbor calculation) would remain unmodified.
Upvotes: 1