Reputation: 2309
I have a data set that could look like this:
x <- data.frame(id=c(1,2,3),
col1=c("UX1", "UX3", "UX2"),
col2=c("UX2", "UX1", "UX1"),
col3=c("PROC1", "PROC2", "PROC3"),
col4=c("PROC3", "PROC3", "PROC1")
)
output:
id col1 col2 col3 col4
1 1 UX1 UX2 PROC1 PROC3
2 2 UX3 UX1 PROC2 PROC3
3 3 UX2 UX1 PROC3 PROC1
and I would like the output to look like this:
x2 <- data.frame(id=c(1,2,3),
col1=c("UX1", "UX3", "UX2"),
col2=c("UX2", "UX1", "UX1"),
col3=c("PROC1", "PROC2", "PROC3"),
col43=c("PROC3", "PROC3", "PROC1"),
UX1=c(1,1,1),
UX2=c(1,0,1),
UX3=c(0,1, 0),
PROC1 =c(1,0,1),
PROC2=c(0,1,0),
PROC3 = c(1,1,1))
Wanted output:
id col1 col2 col3 col43 UX1 UX2 UX3 PROC1 PROC2 PROC3
1 1 UX1 UX2 PROC1 PROC3 1 1 0 1 0 1
2 2 UX3 UX1 PROC2 PROC3 1 0 1 0 1 1
3 3 UX2 UX1 PROC3 PROC1 1 1 0 1 0 1
So basicalle to create a dummy if a row contains a string. I can create dummy.data.frame
using library(dummies)
e.g.
y <- dummy.data.frame(x)
but this approch thinks that (for example) UX1 in column one is different than UX1 in column two. So dummy.data.frame does not work...
Upvotes: 0
Views: 419
Reputation: 51582
Here is an idea via tidyverse
. We first gather
all except the id
variable. We then spread
to get the required structure and use a simply replace
to 'dummify' our data, i.e.
library(tidyverse)
x %>%
gather(var, val, -id) %>%
spread(val, var, fill = 0) %>%
mutate_at(vars(-id), funs(replace(., . != 0, 1)))
which gives,
id PROC1 PROC2 PROC3 UX1 UX2 UX3 1 1 1 0 1 1 1 0 2 2 0 1 1 1 0 1 3 3 1 0 1 1 1 0
You can then very easily cbind()
to the original data frame, i.e.
x2 <- x %>%
gather(var, val, -id) %>%
spread(val, var, fill = 0) %>%
mutate_at(vars(-id), funs(replace(., . != 0, 1)))
cbind(x, x2)
# id proc1 proc2 proc3 proc4 id PROC1 PROC2 PROC3 UX1 UX2 UX3
#1 1 UX1 UX2 PROC1 PROC3 1 1 0 1 1 1 0
#2 2 UX3 UX1 PROC2 PROC3 2 0 1 1 1 0 1
#3 3 UX2 UX1 PROC3 PROC1 3 1 0 1 1 1 0
NOTE: As @mmn points out, we can merge
instead of cbind
, i.e.
x %>%
gather(var, val, - id) %>%
spread(val, var, fill = 0) %>%
mutate_at(vars(-id), funs(replace(., . != 0, 1))) %>%
left_join(x, ., by = 'id')
# id col1 col2 col3 col4 PROC1 PROC2 PROC3 UX1 UX2 UX3
#1 1 UX1 UX2 PROC1 PROC3 1 0 1 1 1 0
#2 2 UX3 UX1 PROC2 PROC3 0 1 1 1 0 1
#3 3 UX2 UX1 PROC3 PROC1 1 0 1 1 1 0
Upvotes: 2
Reputation: 2644
Just for completeness, suggesting also a data.table alternative:
# load the data table package
library(data.table)
# create the sample data set
x <- data.frame(id=c(1,2,3),
col1=c("UX1", "UX3", "UX2"),
col2=c("UX2", "UX1", "UX1"),
col3=c("PROC1", "PROC2", "PROC3"),
col4=c("PROC3", "PROC3", "PROC1")
)
# convert data frame to data table
x <- data.table(x)
# first convert data to long format using melt function
# then use cast to go back to wide format, convert "value" variable to columns and check where are missing values
# then join on the original data set
x[dcast(melt(x, "id"), id ~ value, fun = function(x) sum(!is.na(x))), on = "id"]
Upvotes: 0