Reputation: 1777
I have a pandas data frame with 16,777,216 rows. This is every possible combination of three columns (Red, Green and Blue) between 0 and 255 inclusive.
I would like to add a column to this data frame which is the hex code of the three values of the row. I thought something like the below would have been the best solution:
df["Hex"] = "#{0:02x}{1:02x}{2:02x}".format(df["Red"],df["Green"],df["Blue"])
However, it appears you can't pass a series into the string format method.
Is there a way of getting around this problem? Furthermore, would that be the most efficient way of doing it, given the data frame is fairly large?
Upvotes: 3
Views: 202
Reputation: 863421
For python 3.6+
is possible use very fast f-string
s:
z = zip(df['Red'], df['Blue'], df['Green'])
df["Hex"] = [f'#{R:02X}{B:02X}{G:02X}' for R,B,G in z]
For lower versions:
df["Hex"] = ['#{0:02X}{1:02X}{2:02X}'.format(R,B,G) for R,B,G in z]
Thank you @Jon for improving solution:
df["Hex"] = ['#{0:02X}{1:02X}{2:02X}'.format(*el) for el in z]
Performance:
#10000 rows
df = pd.DataFrame(np.random.randint(256, size=(10000, 3)), columns=['Red', 'Green', 'Blue'])
In [244]: %%timeit
...: z = zip(df['Red'], df['Green'], df['Blue'])
...: df["Hex"] = [f'#{R:02X}{B:02X}{G:02X}' for R,B,G in z]
...:
12.9 ms ± 45.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [245]: %%timeit
...: z = zip(df['Red'], df['Green'], df['Blue'])
...: df["Hex"] = ['#{0:02X}{1:02X}{2:02X}'.format(R,B,G) for R,B,G in z]
...:
12.4 ms ± 1.14 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [246]: %%timeit
...: z = zip(df['Red'], df['Green'], df['Blue'])
...: df["Hex"] = ['#{0:02X}{1:02X}{2:02X}'.format(*el) for el in z]
...:
11.3 ms ± 55 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [246]: %%timeit
...: df["Hex"] = df.apply('#{Red:02X}{Green:02X}{Blue:02X}'.format_map, axis=1)
...:
346 ms ± 42.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Upvotes: 1
Reputation: 142216
You can use .apply
, eg:
df = pd.DataFrame(np.random.randint(256, size=(10, 3)), columns=['Red', 'Green', 'Blue'])
eg:
Red Green Blue
0 125 100 174
1 107 247 235
2 230 254 33
3 91 107 33
4 209 220 232
5 175 10 47
6 120 66 44
7 21 136 254
8 226 237 32
9 89 57 71
Then:
df.apply('#{Red:02X}{Green:02X}{Blue:02X}'.format_map, axis=1)
Gives you:
0 #7D64AE
1 #6BF7EB
2 #E6FE21
3 #5B6B21
4 #D1DCE8
5 #AF0A2F
6 #78422C
7 #1588FE
8 #E2ED20
9 #593947
dtype: object
Upvotes: 2