Reputation: 2553
I have written the following script that reads a yaml
specification of a CNN-RNN-FCN NN architecture and builds a corresponding Keras model:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 27 10:22:03 2018
@author: jsevillamol
"""
import yaml, argparse
from contextlib import redirect_stdout
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, Flatten
from tensorflow.python.keras.layers import TimeDistributed, LSTM
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.layers import BatchNormalization, Dropout
def build_model(
input_shape,
num_classes,
data_type,
activation_function,
dropout_rate,
use_batchnorm,
cnn_layers,
lstm_units,
concat_lstm_output,
fcn_layers):
"""
Builds a CNN-RNN-FCN model according to some specs
"""
# Build a model with the functional API
inputs = Input(input_shape)
x = inputs
# CNN feature extractor
for i, cnn_layer in enumerate(cnn_layers):
# Extract layer params
filters = cnn_layer['filters']
kernel_size = cnn_layer['kernel_size']
use_maxpool = cnn_layer['use_maxpool']
# build cnn_layer
x = TimeDistributed(Conv2D(
filters,
kernel_size,
strides=(1, 1),
padding='same',
data_format=None,
dilation_rate=(1, 1),
activation=activation_function,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None
), name=f'conv2D_{i}')(x)
if use_batchnorm:
x = TimeDistributed(BatchNormalization(
axis=-1,
momentum=0.99,
epsilon=0.001,
center=True,
scale=True,
beta_initializer='zeros',
gamma_initializer='ones',
moving_mean_initializer='zeros',
moving_variance_initializer='ones',
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None
), name=f'batchnorm_{i}')(x)
# add maxpool if needed
if use_maxpool:
x = TimeDistributed(MaxPooling2D(
pool_size=(2, 2),
strides=None,
padding='valid',
data_format=None
), name=f'maxpool_{i}')(x)
x = TimeDistributed(Flatten(), name='flatten')(x)
x = TimeDistributed(Dropout(dropout_rate), name='dropout')(x)
# LSTM feature combinator
x = LSTM(
lstm_units,
activation='tanh',
recurrent_activation='hard_sigmoid',
use_bias=True,
kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal',
bias_initializer='zeros',
unit_forget_bias=True,
kernel_regularizer=None,
recurrent_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
recurrent_constraint=None,
bias_constraint=None,
dropout=dropout_rate,
recurrent_dropout=0.0,
implementation=1,
return_sequences=concat_lstm_output,
return_state=False,
go_backwards=False,
stateful=False,
unroll=False
)(x)
if concat_lstm_output:
x = Flatten()(x)
# FCN classifier
for fcn_layer in fcn_layers:
# extract layer params
units = fcn_layer['units']
# build layer
x = Dense(
units,
activation=activation_function,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None
)(x)
x = Dropout(dropout_rate)(x)
prediction = Dense(num_classes, activation='softmax')(x)
# Build model
model = Model(inputs=inputs, outputs=prediction)
return model
if __name__=="__main__":
# parser options
parser = argparse.ArgumentParser(
description=("Build a customized cnn-rnn keras model with ctalearn."))
parser.add_argument(
'config_file',
help="path to YAML file containing a training configuration")
args = parser.parse_args()
# load config file
with open(args.config_file, 'r') as config_file:
config = yaml.load(config_file)
model = build_model(**config['model_config'])
# Show model summary through console and then save it to file
model.summary()
with open('model_summary.txt', 'w') as f:
with redirect_stdout(f):
model.summary()
# save model architecture to disk in .h5 format
model.save('untrained_model.h5', include_optimizer=False)
I want to add a new feature to the program, that will allow to build models which accept as input examples with shape (img_length, img_height, n_channels)
, i.e. a single image per example instead of a sequence as currently is.
For this it would be awesome to be able able to apply the TimeDistributed
wrapper all at once after I build the CNN part of the model, so I do not have to add lots of conditionals everywhere.
How can I do that?
Upvotes: 1
Views: 715
Reputation: 33410
A single image can be considered as a sequence of length one. Therefore, you can do this easily with a simple check and using Reshape
layer:
inputs = Input(input_shape)
x = inputs
# if the input is a single image,
# reshape it to a sequence of length one
if len(input_shape) == 3:
x = Reshape((1,) + input_shape)(x)
# the rest is the same
Upvotes: 2