Reputation: 115
With Spark dataframe, I want to update a row value based on other rows with same id.
For example, I have records below,
id,value
1,10
1,null
1,null
2,20
2,null
2,null
I want to get the result as below
id,value
1,10
1,10
1,10
2,20
2,20
2,20
To summarize, the value column is null in some rows, I want to update them if there is another row with same id which has valid value.
In sql, I can simply write a update sentence with inner-join, but I didn't find the same way in Spark-sql.
update combineCols a inner join combineCols b on a.id = b.id set a.value = b.value (this is how I do it in sql)
Upvotes: 1
Views: 1357
Reputation: 7587
Let's use SQL method to solve this issue -
myValues = [(1,10),(1,None),(1,None),(2,20),(2,None),(2,None)]
df = sqlContext.createDataFrame(myValues,['id','value'])
df.registerTempTable('table_view')
df1=sqlContext.sql(
'select id, sum(value) over (partition by id) as value from table_view'
)
df1.show()
+---+-----+
| id|value|
+---+-----+
| 1| 10|
| 1| 10|
| 1| 10|
| 2| 20|
| 2| 20|
| 2| 20|
+---+-----+
Caveat: Thos code assumes that there is only one non-null
value for any particular id
. When we groupby
values, we have to use an aggregation
function, and I have used sum
. In case there are 2 non-null
values for any id
, then the will be summed up. If id
could have multiple non-null
values, then it's bettwe to use min/max
, so that we get one of the values rather than sum
.
df1=sqlContext.sql(
'select id, max(value) over (partition by id) as value from table_view'
)
Upvotes: 1
Reputation: 1497
You can use window to do this(in pyspark):
from pyspark.sql import functions as F
from pyspark.sql.window import Window
# create dataframe
df = sc.parallelize([
[1,10],
[1,None],
[1,None],
[2,20],
[2,None],
[2,None],
]).toDF(('id', 'value'))
window = Window.partitionBy('id').orderBy(F.desc('value'))
df \
.withColumn('value', F.first('value').over(window)) \
.show()
Results:
+---+-----+
| id|value|
+---+-----+
| 1| 10|
| 1| 10|
| 1| 10|
| 2| 20|
| 2| 20|
| 2| 20|
+---+-----+
You can use the same functions in scala.
Upvotes: 0