Reputation: 1939
I have a data frame with Dates and Values:
library(dplyr)
library(lubridate)
df<-tibble(DateTime=ymd(c("2018-01-01","2018-01-01","2018-01-02","2018-01-02","2018-01-03","2018-01-03")),
Value=c(5,10,12,3,9,11),Rank=rep(0,6))
I would like to Rank the values of the two last rows, each compared with the rest four Value rows (the ones of previous dates).
I have managed to do this:
dfReference<-df%>%filter(DateTime!=max(DateTime))
dfTarget<-df%>%filter(DateTime==max(DateTime))
for (i in 1:nrow(dfTarget)){
tempDf<-rbind(dfReference,dfTarget[i,])%>%
mutate(Rank=rank(Value,ties.method = "first"))
dfTarget$Rank[i]=filter(tempDf,DateTime==max(df$DateTime))$Rank
}
Desired output:
> dfTarget
# A tibble: 2 x 3
DateTime Value Rank
<date> <dbl> <dbl>
1 2018-01-03 9 3
2 2018-01-03 11 4
But I am looking for a more delicate way.
Thanks
Upvotes: 2
Views: 74
Reputation: 28695
This is basically the same idea as your for
loop, but instead of a loop it uses map_int
, and instead of creating a new data frame using rbind
it creates a new vector with c()
.
library(tidyverse)
is.max <- with(df, DateTime == max(DateTime))
df[is.max,] %>%
mutate(Rank = map_int(Value, ~
c(df$Value[!is.max], .x) %>%
rank(ties.method = 'first') %>%
tail(1)))
# # A tibble: 2 x 3
# DateTime Value Rank
# <date> <dbl> <int>
# 1 2018-01-03 9 3
# 2 2018-01-03 11 4
Upvotes: 3