Reputation: 23
I have two data sets, one containing air quality data and one containing weather data, each with a column named 'dt' for date and time. However these times do not match exactly. I would like to join these tables so that the air quality data is retained and the closest time on the weather data is matched and merged.
df_aq:
dt Latitude Longitude ... Speed_kmh PM2.5 PM10
0 11/20/2018 12:16 33.213922 -97.151055 ... 0.35 16.0 86.1
1 11/20/2018 12:16 33.213928 -97.151007 ... 5.01 16.0 86.1
2 11/20/2018 12:16 33.213907 -97.150953 ... 5.27 16.0 86.1
3 11/20/2018 12:16 33.213872 -97.150883 ... 5.03 16.0 86.1
...
364 11/20/2018 12:46 33.209462 -97.148623 ... 0.00 2.8 6.3
365 11/20/2018 12:46 33.209462 -97.148623 ... 0.00 2.8 6.3
366 11/20/2018 12:46 33.209462 -97.148623 ... 0.00 2.8 6.3]
df_weather:
USAF WBAN dt DIR SPD ... PCP01 PCP06 PCP24 PCPXX
0 722589 3991 11/20/2018 0:53 360 6 ... 0 ***** ***** *****
1 722589 3991 11/20/2018 1:53 350 6 ... 0 ***** ***** *****
2 722589 3991 11/20/2018 2:53 310 3 ... 0 ***** ***** *****
3 722589 3991 11/20/2018 3:53 330 5 ... 0 ***** ***** *****
4 722589 3991 11/20/2018 4:53 310 6 ... 0 ***** ***** *****
df_aq ranges from 12:16-12:46, and df_weather has data every hour on the 53 minute mark. Therefore the closest times would be 11:53 and 12:53, so I would like those two times and the subsequent weather data to merge appropriately with all the data on df_aq
I've tried experimenting with iloc and Index.get_loc as that seems to be the best way, but I keep getting an error.
I've tried:
ctr = df_aq['dt'].count() - 1
startTime = df_aq['dt'][0]
endTime = df_aq['dt'][ctr]
print df_weather.iloc[df_weather.index.get_loc(startTime,method='nearest') or df_weather.index.get_loc(endTime,method='nearest')]
but then I get an error:
TypeError: unsupported operand type(s) for -: 'long' and 'str'
I'm not sure what this error means
Is there a better way to do this than iloc? And if not, what am I doing wrong with this bit of code?
Thank you very much for any help you can offer.
Upvotes: 2
Views: 1324
Reputation: 8816
I'm taking liberty to have an example which i used during my learning :-) , hope that will help to achieve what you are looking.
As stated in the comment section you can try special function merge_asof()
for merging Time-series DataFrames
DataFrame First:
>>> df1
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.048 AAPL 98.00 100
DataFrame Second:
>>> df2
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03
>>> new_df = pd.merge_asof(df1, df2, on='time', by='ticker')
>>> new_df
time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
Check the Documentation Doc merge_asof
Upvotes: 1