Reputation: 757
I have a dataset which requires missing value treatment.
Column Missing Values
Complaint_ID 0
Date_received 0
Transaction_Type 0
Complaint_reason 0
Company_response 22506
Date_sent_to_company 0
Complaint_Status 0
Consumer_disputes 7698
Now the problem is, when I try to replace the missing values
with mode of other columns
using groupby
:
Code:
data11["Company_response"] =
data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()
[0]))["Company_response"]
data11["Consumer_disputes"] =
data11.groupby("Transaction_Type").transform(lambda x: x.fillna(x.mode()
[0]))["Consumer_disputes"]
I get the following error:
Traceback (most recent call last):
File "<ipython-input-89-8de6a010a299>", line 1, in <module>
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3741, in transform
return self._transform_general(func, *args, **kwargs)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3699, in _transform_general
res = path(group)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3783, in <lambda>
lambda x: func(x, *args, **kwargs), axis=self.axis)
File "C:\Anaconda3\lib\site-packages\pandas\core\frame.py", line 4360, in apply
ignore_failures=ignore_failures)
File "C:\Anaconda3\lib\site-packages\pandas\core\frame.py", line 4456, in _apply_standard
results[i] = func(v)
File "C:\Anaconda3\lib\site-packages\pandas\core\groupby.py", line 3783, in <lambda>
lambda x: func(x, *args, **kwargs), axis=self.axis)
File "<ipython-input-89-8de6a010a299>", line 1, in <lambda>
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
File "C:\Anaconda3\lib\site-packages\pandas\core\series.py", line 601, in __getitem__
result = self.index.get_value(self, key)
File "C:\Anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 2434, in get_value
return libts.get_value_box(s, key)
File "pandas\_libs\tslib.pyx", line 923, in pandas._libs.tslib.get_value_box (pandas\_libs\tslib.c:18843)
File "pandas\_libs\tslib.pyx", line 939, in pandas._libs.tslib.get_value_box (pandas\_libs\tslib.c:18560)
IndexError: ('index out of bounds', 'occurred at index Consumer_disputes')
I have checked the length
of the dataframe
and all of its columns and it is same: 43266.
I have also found a question similar to this but does not have correct answer: Click here
Please help resolve the error.
IndexError: ('index out of bounds', 'occurred at index Consumer_disputes')
Here is a snapshot of the dataset if it helps in any way: Dataset Snapshot
I am using the below code successfully. But it does not serve my purpose exactly. Helps to fill the missing values though.
data11['Company_response'].fillna(data11['Company_response'].mode()[0],
inplace=True)
data11['Consumer_disputes'].fillna(data11['Consumer_disputes'].mode()[0],
inplace=True)
Edit1: (Attaching Sample)
You can see that the missing values for company-response of Tr-1 and Tr-3 are filled by taking mode of Complaint-Reason. And similarly for the Consumer-Disputes by taking mode of transaction-type, for Tr-5.
The below snippet consists of the dataframe and the code for those who want to replicate and give it a try.
import pandas as pd
import numpy as np
data11=pd.DataFrame({'Complaint_ID':['Tr-1','Tr-2','Tr-3','Tr-4','Tr-5','Tr-6'],
'Transaction_Type':['Mortgage','Credit card','Bank account or service','Debt collection','Credit card','Mortgage'],
'Complaint_reason':['Loan servicing, payments, escrow account','Incorrect information on credit report',"Cont'd attempts collect debt not owed","Cont'd attempts collect debt not owed",'Payoff process','Loan servicing, payments, escrow account'],
'Company_response':[np.nan,'Company chooses not to provide a public response',np.nan,'Company believes it acted appropriately as authorized by contract or law','Company has responded to the consumer and the CFPB and chooses not to provide a public response','Company disputes the facts presented in the complaint'],
'Consumer_disputes':['Yes','No','No','No',np.nan,'Yes']})
data11.isnull().sum()
data11["Company_response"] = data11.groupby("Complaint_reason").transform(lambda x: x.fillna(x.mode()[0]))["Company_response"]
data11["Consumer_disputes"] = data11.groupby("Transaction_Type").transform(lambda x: x.fillna(x.mode()[0]))["Consumer_disputes"]
Upvotes: 2
Views: 1390
Reputation: 153510
Try:
data11["Company_response"] = data11.groupby("Complaint_reason")['Company_response'].transform(lambda x: x.fillna(x.mode()[0]))
data11["Consumer_disputes"] = data11.groupby("Transaction_Type")['Consumer_disputes'].transform(lambda x: x.fillna(x.mode()[0]))
Upvotes: 1
Reputation: 11657
@Mikhail Berlinkov is almost certainly correct. I was able to reproduce your error, and then avoid it by using dropna()
:
data11.groupby("Transaction-Type").transform(
lambda x: x.fillna(x.mode() [0]))["Consumer-disputes"]
# Returns IndexError
data11.dropna().groupby("Transaction-Type").transform(
lambda x: x.fillna(x.mode() [0]))["Consumer-disputes"]
# Works
Upvotes: 1
Reputation: 1624
The error is raised because for at least one of the groups the values in corresponding aggregated columns contains only np.nan values. In this case pd.Series([np.nan]).mode()
returns an empty series which leads to an error when you take the first value.
So, you may use something like transform(lambda x: x.fillna(x.mode()[0] if not x.mode().empty else "Empty") )
.
Upvotes: 5