Reputation: 2555
Is there any way to effectively count the nr of rows before and after a specific signal value in Pandas?
Here is the Pandas Datatable. You can see a column called "Signal" which has values 0 and 1. This is the given data. What i am looking after is the column "forwardBackwardRows". In this column you see that for each signal value 1 the nr of rows forward and backwards of that value. I can fixed that i a loop but will not be efficient as my tables have around 100mil rows and i have around 1000 of such tables. The maximum count value should be 2. No more than 2 rows should be counted before or after the signal
import pandas as pd
data = pd.DataFrame([[1420.49,0],[1421.12,0],[1418.95,0],[1419.04,1],[1419.04,0],[1417.51,0],[1416.97,0],[1413.21,0],[1411.49,1],[1412.57,0],[1408.55,0],[1411.56,0],[1409.16,0],[1413.38,0],[1413.38,1],[1402.35,0],[1413.22,0],[1411.7,0],[1397.8,0],[1398.36,0],[1397.62,0],[1394.58,1],[1399.05,0],[1399.9,0],[1398.96,1],[1398.96,0],[1393.69,0],[1398.13,0],[1398.66,1],[1398.02,0],[1397.97,1],[1396.05,0],[1398.13,1]], columns=["Values", "Signal"])
Here is a visual of the result i am looking after
+----+---------+--------+---------------------+
| | Values | Signal | forwardBackwardRows |
+----+---------+--------+---------------------+
| 0 | 1420.49 | 0 | 0 |
| 1 | 1421.12 | 0 | -3 |
| 2 | 1418.95 | 0 | -2 |
| 3 | 1419.04 | 1 | 1 |
| 4 | 1419.04 | 0 | 2 |
| 5 | 1417.51 | 0 | 3 |
| 6 | 1416.97 | 0 | -3 |
| 7 | 1413.21 | 0 | -2 |
| 8 | 1411.49 | 1 | 1 |
| 9 | 1412.57 | 0 | 2 |
| 10 | 1408.55 | 0 | 3 |
| 11 | 1411.56 | 0 | 0 |
| 12 | 1409.16 | 0 | -3 |
| 13 | 1413.38 | 0 | -2 |
| 14 | 1413.38 | 1 | 1 |
| 15 | 1402.35 | 0 | 2 |
| 16 | 1413.22 | 0 | 3 |
| 17 | 1411.7 | 0 | 0 |
| 18 | 1397.8 | 0 | 0 |
| 19 | 1398.36 | 0 | -3 |
| 20 | 1397.62 | 0 | -2 |
| 21 | 1394.58 | 1 | 1 |
| 22 | 1399.05 | 0 | 2 |
| 23 | 1399.9 | 0 | -2 |
| 24 | 1398.96 | 1 | 1 |
| 25 | 1398.96 | 0 | 2 |
| 26 | 1393.69 | 0 | 3 |
| 27 | 1398.13 | 0 | -2 |
| 28 | 1398.66 | 1 | 1 |
| 29 | 1398.02 | 0 | 2 |
| 30 | 1397.97 | 1 | 1 |
| 31 | 1396.05 | 0 | 2 |
| 32 | 1398.13 | 1 | 1 |
+----+---------+--------+---------------------+
Upvotes: 1
Views: 600
Reputation: 88236
Here's one way:
start = df[df.Signal == 1].iloc[0].name
end = df[df.Signal == 1].iloc[-1].name
For the increasing counter you can do the following:
g = df.Signal.cumsum()
pos = df.loc[start:, 'Signal'].groupby(g).cumcount()+1
pos = pos.reindex(index = df.index).fillna(0)
pos[pos > 3] = 0
And for the decreasing:
g2 = df.Signal[::-1].cumsum()[::-1]
neg = -(df.loc[:end, 'Signal'].groupby(g2).cumcount(ascending=False)+1)
neg = neg.reindex(index = df.index).fillna(0)
neg[neg < -3] = 0
And you can use DataFrame.combine
in order to obtain the expected output:
def f(x,y):
if x == 0.:
return y
if y == 0.:
return x
if abs(x) <= abs(y):
return x
else:
return y
df['forwardBackwardRows'] = pos.combine(neg, func = f)
Output:
Values Signal forwardBackwardRows
0 1420.49 0 0.0
1 1421.12 0 -3.0
2 1418.95 0 -2.0
3 1419.04 1 1.0
4 1419.04 0 2.0
5 1417.51 0 3.0
6 1416.97 0 -3.0
7 1413.21 0 -2.0
8 1411.49 1 1.0
9 1412.57 0 2.0
10 1408.55 0 3.0
11 1411.56 0 0.0
12 1409.16 0 -3.0
13 1413.38 0 -2.0
14 1413.38 1 1.0
15 1402.35 0 2.0
16 1413.22 0 3.0
17 1411.70 0 0.0
18 1397.80 0 0.0
19 1398.36 0 -3.0
20 1397.62 0 -2.0
21 1394.58 1 1.0
22 1399.05 0 2.0
23 1399.90 0 -2.0
24 1398.96 1 1.0
25 1398.96 0 2.0
26 1393.69 0 3.0
27 1398.13 0 -2.0
28 1398.66 1 1.0
29 1398.02 0 2.0
30 1397.97 1 1.0
31 1396.05 0 2.0
32 1398.13 1 1.0
Upvotes: 1