Reputation: 740
I have a numpy array Y of shape (1360, 1024) which contains aggregated 1360 data set that each are of length 1024. I have another array of shape (1024,) called X.
This is what Y[0:5] looks like (as example):
array([[13.72059917, 16.27633476, 18.49536324, ..., 0.81599081,
0.99834043, 0.92653233],
[13.42022991, 15.06573963, 17.45792198, ..., 0.85495144,
0.75660354, 1.02977574],
[13.6416111 , 16.03499603, 17.46924019, ..., 0.85070604,
0.94057351, 0.87749392],
[14.69120216, 16.85452461, 17.6070137 , ..., 0.86291492,
0.99953759, 0.81989962],
[13.57082653, 16.15143394, 17.55677032, ..., 0.93469822,
0.96676576, 1.09142995]])
Now I want to plot all the 1360 Y data sets on top of each other. For all of them the x-axis is the same, i.e. X.
I know I can do this to plot multiple things:
pyplot.plot(X,Y[0],X,Y[1],X,Y[2])
but that looks like brute force. Also this could be solved with a loop, but not very elegant.
I tried a bit with list comprehension to make the X,Y[0]... automatically but failed.
Ideally I want a one-line solution and no loop.
Upvotes: 1
Views: 11319
Reputation: 1537
plt.plot
reads plots by columns. here's a complete example:
import numpy as np
import matplotlib.pyplot as plt
xa = np.array([1, 2, 3]) # shape (3,)
xb = np.array([[1],
[2],
[3]]) # shape (3,1)
xc = np.array([[1, 4],
[2, 5],
[3, 6]]) # shape (3,2)
ya = np.array([[1, 4],
[2, 5],
[3, 6]]) # shape (3,2)
yb = np.array([1, 2, 3]) # shape (3,)
plt.figure()
plt.plot(xa, ya) # res- 2 lines: ((1,1), (2,2), (3,3)) & ((1,4), (2,5), (3,6))
plt.figure()
plt.plot(xb, ya) # res- 2 lines: ((1,1), (2,2), (3,3)) & ((1,4), (2,5), (3,6))
plt.figure()
plt.plot(xc, ya) # res- 2 lines: ((1,1), (2,2), (3,3)) & ((4,4), (5,5), (6,6))
plt.figure()
plt.plot(xc.T, ya.T) # res- 3 lines: ((1,1), (4,4)) & ((2,2),(5,5)) & ((3,3), (6,6))
plt.figure()
plt.plot(xa, yb) # res- 1 line: ((1,1), (2,2), (3,3))
plt.figure()
plt.plot(xb, yb) # res- 1 line: ((1,1), (2,2), (3,3))
plt.figure()
plt.plot(xc, yb) # res- 2 lines: ((1,1), (2,2), (3,3)) & ((4,1), (5,2), (6,3))
plt.show()
Upvotes: 2
Reputation: 339130
You can supply a 2D array to plot(x,y)
. If x
is of length n
, y
must be of shape (n,m)
to plot m
lines (one line per column).
import numpy as np
import matplotlib.pyplot as plt
Y = np.random.rand(5,7)
X = np.arange(7)
plt.plot(X, Y.T)
plt.show()
For a large number of columns, this is however inefficient. A more efficient way to produce this plot is to draw a single "line" via a LineCollection
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
Y = np.random.rand(5,7)
X = np.arange(7)
x = np.tile(X, Y.shape[0]).reshape(*Y.shape)
v = np.stack((x,Y), axis=-1)
c = LineCollection(v)
fig, ax = plt.subplots()
ax.add_collection(c)
ax.autoscale()
plt.show()
Upvotes: 4