Reputation: 18108
I can can create a DF inside foreachRDD if I do not try and use a Case Class and simply let default names for columns be made with toDF() or if I assign them via toDF("c1, "c2").
As soon as I try and use a Case Class, and having looked at the examples, I get:
Task not serializable
If I shift the Case Class statement around I then get:
toDF() not part of RDD[CaseClass]
It's legacy, but I am curious as to the nth Serialization error that Spark can produce and if it carries over into Structured Streaming.
I have an RDD that need not be split, may be that is the issue? NO. Running in DataBricks?
Coding is as follows:
import org.apache.spark.sql.SparkSession
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
case class Person(name: String, age: Int) //extends Serializable // Some say inherently serializable so not required
val spark = SparkSession.builder
.master("local[4]")
.config("spark.driver.cores", 2)
.appName("forEachRDD")
.getOrCreate()
val sc = spark.sparkContext
val ssc = new StreamingContext(spark.sparkContext, Seconds(1))
val rddQueue = new mutable.Queue[RDD[List[(String, Int)]]]()
val QS = ssc.queueStream(rddQueue)
QS.foreachRDD(q => {
if(!q.isEmpty) {
import spark.implicits._
val q_flatMap = q.flatMap{x=>x}
val q_withPerson = q_flatMap.map(field => Person(field._1, field._2))
val df = q_withPerson.toDF()
df.show(false)
}
}
)
ssc.start()
for (c <- List(List(("Fred",53), ("John",22), ("Mary",76)), List(("Bob",54), ("Johnny",92), ("Margaret",15)), List(("Alfred",21), ("Patsy",34), ("Sylvester",7)) )) {
rddQueue += ssc.sparkContext.parallelize(List(c))
}
ssc.awaitTermination()
Upvotes: 0
Views: 194
Reputation: 18108
Having not grown up with Java, but having looked around I found out what to do, but am not expert enough to explain.
I was running in a DataBricks notebook where I prototype.
The clue is that the
case class Person(name: String, age: Int)
was inside the same DB Notebook. One needs to define the case class external to the current notebook - in a separate notebook - and thus separate to the class running the Streaming.
Upvotes: 0