Reputation: 10888
I create a torch tensor and I want it to go to GPU but it doesn't. This is so broken. What's wrong?
def test_model_works_on_gpu():
with torch.cuda.device(0) as cuda:
some_random_d_model = 2 ** 9
five_sentences_of_twenty_words = torch.from_numpy(np.random.random((5, 20, T * d))).float()
five_sentences_of_twenty_words_mask = torch.from_numpy(np.ones((5, 1, 20))).float()
pytorch_model = make_sentence_model(d_model=some_random_d_model, T_sgnn=T, d_sgnn=d)
five_sentences_of_twenty_words.to(cuda)
five_sentences_of_twenty_words_mask.to(cuda)
print(type(five_sentences_of_twenty_words), type(five_sentences_of_twenty_words_mask))
print(five_sentences_of_twenty_words.is_cuda, five_sentences_of_twenty_words_mask.is_cuda)
pytorch_model.to(cuda)
output_before_match = pytorch_model(five_sentences_of_twenty_words, five_sentences_of_twenty_words_mask)
assert output_before_match.shape == (5, some_random_d_model)
print(type(output_before_match))
print(output_before_match.is_cuda, output_before_match.get_device())
tests/test_model.py:58: RuntimeError
<class 'torch.Tensor'> <class 'torch.Tensor'>
False False
<class 'torch.Tensor'>
> print(output_before_match.is_cuda, output_before_match.get_device())
E RuntimeError: get_device is not implemented for tensors with CPU backend
Also:
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
2
And:
pip freeze | grep -i torch
torch==1.0.0
torchvision==0.2.1
Upvotes: 1
Views: 10711
Reputation: 24181
Your issue is the following lines:
five_sentences_of_twenty_words.to(cuda)
five_sentences_of_twenty_words_mask.to(cuda)
.to(device)
only operates in place when applied to a model.
When applied to a tensor, it must be assigned:
five_sentences_of_twenty_words = five_sentences_of_twenty_words.to(cuda)
five_sentences_of_twenty_words_mask = five_sentences_of_twenty_words_mask.to(cuda)
Upvotes: 6
Reputation: 10888
Fixed by doing this:
def test_model_works_on_gpu():
device_id = 0
with torch.cuda.device(device_id) as cuda:
some_random_d_model = 2 ** 9
five_sentences_of_twenty_words = torch.from_numpy(np.random.random((5, 20, T * d))).float()
five_sentences_of_twenty_words_mask = torch.from_numpy(np.ones((5, 1, 20))).float()
pytorch_model = make_sentence_model(d_model=some_random_d_model, T_sgnn=T, d_sgnn=d)
five_sentences_of_twenty_words = five_sentences_of_twenty_words.cuda(device_id)
five_sentences_of_twenty_words_mask = five_sentences_of_twenty_words_mask.cuda(device_id)
print(type(five_sentences_of_twenty_words), type(five_sentences_of_twenty_words_mask))
print(five_sentences_of_twenty_words.is_cuda, five_sentences_of_twenty_words_mask.is_cuda)
pytorch_model = pytorch_model.cuda(device_id)
output_before_match = pytorch_model(five_sentences_of_twenty_words, five_sentences_of_twenty_words_mask)
assert output_before_match.shape == (5, some_random_d_model)
print(type(output_before_match))
print(output_before_match.is_cuda, output_before_match.get_device())
assert output_before_match.is_cuda
assert five_sentences_of_twenty_words.is_cuda
assert five_sentences_of_twenty_words_mask.is_cuda
I also used the add_module
method in my modules.
Upvotes: 0
Reputation: 141
To transfer a "CPU" tensor to "GPU" tensor, simply do:
cpuTensor = cpuTensor.cuda()
This would take this tensor to default GPU device. If you have multiple of such GPU devices, then you can also pass device_id like this:
cpuTensor = cpuTensor.cuda(device=0)
Upvotes: 1