Reputation: 153
I need to generate a weighted average of the returns of some number of financial assets, where the weights used change over time. (The application is financial but the problem itself is a very general one).
Excerpts of my returns and weights are as follows:
returns_df
: Returns of assets over time
┌──────────────────┬───────────┬───────────┬───────────┐ │ DateTime │ Asset 1 │ Asset 2 │ Asset 3 │ ├──────────────────┼───────────┼───────────┼───────────┤ │ 2015-04-09 07:00 │ -0.000959 │ -0.000207 │ -0.000233 │ │ 2015-04-09 08:00 │ -0.004003 │ 0.000169 │ 0.001221 │ │ 2015-04-09 09:00 │ -0.000700 │ -0.000070 │ -0.000096 │ │ 2015-04-09 10:00 │ -0.000812 │ -0.000289 │ 0.000177 │ │ 2015-04-09 11:00 │ -0.000030 │ -0.000168 │ -0.000315 │ └──────────────────┴───────────┴───────────┴───────────┘
weights_df
: Weights of assets over time
┌──────────────────┬─────────┬─────────┬─────────┐ │ Start of weights │ Asset 1 │ Asset 2 │ Asset 3 │ ├──────────────────┼─────────┼─────────┼─────────┤ │ 2015-03-01 │ 1 │ 0 │ 0 │ │ 2015-04-01 │ 0.023 │ 0.8733 │ 0.1037 │ │ 2015-05-01 │ 1 │ 0 │ 0 │ │ 2015-06-01 │ 0.0477 │ 0.8278 │ 0.1245 │ └──────────────────┴─────────┴─────────┴─────────┘
For example, the returns in the first table would all be weighted by {0.023; 0.8733; 0.103}
as they all fall after 2015-04-01
but before 2015-05-01
.
My real data set has returns spanning the entire range of dates in my weights, of course.
I am not sure at all how to approach this, I thought of using groupby()
but given that the shape of weights_df
is not the same as returns_df
, that doesn't seem to work.
import numpy as np
import pandas as pd
from io import StringIO
# alternatively try `import StringIO`
returns_datatext = StringIO("""
DateTime │ Asset 1 │ Asset 2 │ Asset 3
2015-04-09 07:00 │ -0.000959 │ -0.000207 │ -0.000233
2015-04-09 08:00 │ -0.004003 │ 0.000169 │ 0.001221
2015-04-09 09:00 │ -0.000700 │ -0.000070 │ -0.000096
2015-04-09 10:00 │ -0.000812 │ -0.000289 │ 0.000177
2015-04-09 11:00 │ -0.000030 │ -0.000168 │ -0.000315
""")
returns_df = pd.read_table(returns_datatext, index_col=[0], parse_dates=True, sep='│')
weights_datatext = StringIO("""
Start of weights │ Asset 1 │ Asset 2 │ Asset 3
2015-03-01 │ 1 │ 0 │ 0
2015-04-01 │ 0.023 │ 0.8733 │ 0.1037
2015-05-01 │ 1 │ 0 │ 0
2015-06-01 │ 0.0477 │ 0.8278 │ 0.1245
""")
weights_df = pd.read_table(weights_datatext, index_col=[0], parse_dates=True, sep='│')
Expected results for the table above would be the following:
┌──────────────────┬──────────────────┐ │ DateTime │ Weighted average │ ├──────────────────┼──────────────────┤ │ 2015-04-09 07:00 │ -0.000227 │ │ 2015-04-09 08:00 │ 0.000182 │ │ 2015-04-09 09:00 │ -0.000087 │ │ 2015-04-09 10:00 │ -0.000253 │ │ 2015-04-09 11:00 │ -0.000180 │ └──────────────────┴──────────────────┘
Upvotes: 1
Views: 867
Reputation: 59519
This is pd.merge_asof
to link the two, and then numpy.average
import pandas as pd
import numpy as np
## Fix whitespace in sample data
#returns_df.index.name = 'DateTime'
#returns_df.columns = ['Asset1', 'Asset2', 'Asset3']
#weights_df.index.name= 'Start of weights'
#weights_df.columns = ['Asset1', 'Asset2', 'Asset3']
df = pd.merge_asof(returns_df, weights_df,
left_index=True, right_index=True,
direction='backward',
suffixes=['', '_weight'])
cols = ['Asset1', 'Asset2', 'Asset3']
returns_df['weighted_average'] = np.average(df[cols], weights=df[[col + '_weight' for col in cols]], axis=1)
returns_df
Asset1 Asset2 Asset3 weighted_average
DateTime
2015-04-09 07:00:00 -0.000959 -0.000207 -0.000233 -0.000227
2015-04-09 08:00:00 -0.004003 0.000169 0.001221 0.000182
2015-04-09 09:00:00 -0.000700 -0.000070 -0.000096 -0.000087
2015-04-09 10:00:00 -0.000812 -0.000289 0.000177 -0.000253
2015-04-09 11:00:00 -0.000030 -0.000168 -0.000315 -0.000180
For illustration, this is the resulting DataFrame
from the merge. The logic chooses the closest date in weights_df
which is before the date in returns_df
as the merge condition:
Asset1 Asset2 Asset3 Asset1_weight Asset2_weight Asset3_weight
DateTime
2015-04-09 07:00:00 -0.000959 -0.000207 -0.000233 0.023 0.8733 0.1037
2015-04-09 08:00:00 -0.004003 0.000169 0.001221 0.023 0.8733 0.1037
2015-04-09 09:00:00 -0.000700 -0.000070 -0.000096 0.023 0.8733 0.1037
2015-04-09 10:00:00 -0.000812 -0.000289 0.000177 0.023 0.8733 0.1037
2015-04-09 11:00:00 -0.000030 -0.000168 -0.000315 0.023 0.8733 0.1037
Upvotes: 2