Reputation: 423
I'm trying to implement Conditional Batch Normalization in Keras. I assumed that I will have to create a custom layer, hence, I extended from the Normalization source code from Keras team.
The idea: I will have 3 conditions, so, I will need 3 different beta and gamma parameters to be initialized. Then, I just incorporated conditional statements where its needed. Note that my condition changes after every iteration randomly and trying to set the condition based on 3 global Keras variables, c1, c2, and c3.
Here is the code I have currently. It gives me error because of the conditional statements. Any idea how to improve or implement Conditional Batch Normalization in Keras:
UPDATED:
from keras import regularizers, initializers, constraints
from keras.legacy import interfaces
import keras.backend as K
from keras.layers import Layer, Input, InputSpec
from keras.models import Model
import tensorflow as tf
global c1, c2, c3
c1 = K.variable([0])
c2 = K.variable([0])
c3 = K.variable([0])
class ConditionalBatchNormalization(Layer):
"""Conditional Batch normalization layer.
"""
@interfaces.legacy_batchnorm_support
def __init__(self,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer='zeros',
gamma_initializer='ones',
moving_mean_initializer='zeros',
moving_variance_initializer='ones',
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
**kwargs):
super(ConditionalBatchNormalization, self).__init__(**kwargs)
self.axis = axis
self.momentum = momentum
self.epsilon = epsilon
self.center = center
self.scale = scale
self.beta_initializer = initializers.get(beta_initializer)
self.gamma_initializer = initializers.get(gamma_initializer)
self.moving_mean_initializer = initializers.get(moving_mean_initializer)
self.moving_variance_initializer = (
initializers.get(moving_variance_initializer))
self.beta_regularizer = regularizers.get(beta_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_constraint = constraints.get(beta_constraint)
self.gamma_constraint = constraints.get(gamma_constraint)
def build(self, input_shape):
dim = input_shape[0][self.axis]
if dim is None:
raise ValueError('Axis ' + str(self.axis) + ' of '
'input tensor should have a defined dimension '
'but the layer received an input with shape ' +
str(input_shape[0]) + '.')
shape = (dim,)
if self.scale:
self.gamma1 = self.add_weight(shape=shape,
name='gamma',
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
self.gamma2 = self.add_weight(shape=shape,
name='gamma',
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
self.gamma3 = self.add_weight(shape=shape,
name='gamma',
initializer=self.gamma_initializer,
regularizer=self.gamma_regularizer,
constraint=self.gamma_constraint)
else:
self.gamma1 = None
self.gamma2 = None
self.gamma3 = None
if self.center:
self.beta1 = self.add_weight(shape=shape,
name='beta',
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
self.beta2 = self.add_weight(shape=shape,
name='beta',
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
self.beta3 = self.add_weight(shape=shape,
name='beta',
initializer=self.beta_initializer,
regularizer=self.beta_regularizer,
constraint=self.beta_constraint)
else:
self.beta1 = None
self.beta2 = None
self.beta3 = None
self.moving_mean = self.add_weight(
shape=shape,
name='moving_mean',
initializer=self.moving_mean_initializer,
trainable=False)
self.moving_variance = self.add_weight(
shape=shape,
name='moving_variance',
initializer=self.moving_variance_initializer,
trainable=False)
super(ConditionalBatchNormalization, self).build(input_shape)
def call(self, inputs, training=None):
input_shape = K.int_shape(inputs[0])
c1 = inputs[1][0]
c2 = inputs[2][0]
# Prepare broadcasting shape.
ndim = len(input_shape)
reduction_axes = list(range(len(input_shape)))
del reduction_axes[self.axis]
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis]
# Determines whether broadcasting is needed.
needs_broadcasting = (sorted(reduction_axes) != list(range(ndim))[:-1])
def normalize_inference():
if needs_broadcasting:
# In this case we must explicitly broadcast all parameters.
broadcast_moving_mean = K.reshape(self.moving_mean,
broadcast_shape)
broadcast_moving_variance = K.reshape(self.moving_variance,
broadcast_shape)
if self.center:
broadcast_beta = \
tf.case({
c1: lambda: K.reshape(self.beta1,
broadcast_shape),
c2: lambda: K.reshape(self.beta2,
broadcast_shape)
},
default=lambda: K.reshape(self.beta3,
broadcast_shape)
)
else:
broadcast_beta = None
if self.scale:
broadcast_gamma = \
tf.case({
c1: lambda: K.reshape(self.gamma1,
broadcast_shape),
c2: lambda: K.reshape(self.gamma2,
broadcast_shape)
},
default=lambda: K.reshape(self.gamma3,
broadcast_shape)
)
else:
broadcast_gamma = None
return K.batch_normalization(
inputs[0],
broadcast_moving_mean,
broadcast_moving_variance,
broadcast_beta,
broadcast_gamma,
axis=self.axis,
epsilon=self.epsilon)
else:
out = \
tf.case({
c1: lambda: K.batch_normalization(
inputs[0],
self.moving_mean,
self.moving_variance,
self.beta1,
self.gamma1,
axis=self.axis,
epsilon=self.epsilon),
c2: lambda: K.batch_normalization(
inputs[0],
self.moving_mean,
self.moving_variance,
self.beta2,
self.gamma2,
axis=self.axis,
epsilon=self.epsilon)
},
default=lambda: K.batch_normalization(
inputs[0],
self.moving_mean,
self.moving_variance,
self.beta3,
self.gamma3,
axis=self.axis,
epsilon=self.epsilon)
)
return out
# If the learning phase is *static* and set to inference:
if training in {0, False}:
return normalize_inference()
# If the learning is either dynamic, or set to training:
normed_training, mean, variance = \
tf.case({
c1: lambda: K.normalize_batch_in_training(
inputs[0], self.gamma1, self.beta1, reduction_axes,
epsilon=self.epsilon),
c2: lambda: K.normalize_batch_in_training(
inputs[0], self.gamma2, self.beta2, reduction_axes,
epsilon=self.epsilon)
},
default=lambda: K.normalize_batch_in_training(
inputs[0], self.gamma3, self.beta3, reduction_axes,
epsilon=self.epsilon)
)
print(normed_training)
if K.backend() != 'cntk':
sample_size = K.prod([K.shape(inputs[0])[axis]
for axis in reduction_axes])
sample_size = K.cast(sample_size, dtype=K.dtype(inputs[0]))
if K.backend() == 'tensorflow' and sample_size.dtype != 'float32':
sample_size = K.cast(sample_size, dtype='float32')
# sample variance - unbiased estimator of population variance
variance *= sample_size / (sample_size - (1.0 + self.epsilon))
self.add_update([K.moving_average_update(self.moving_mean,
mean,
self.momentum),
K.moving_average_update(self.moving_variance,
variance,
self.momentum)],
inputs[0])
# Pick the normalized form corresponding to the training phase.
return K.in_train_phase(normed_training,
normalize_inference,
training=training)
def get_config(self):
config = {
'axis': self.axis,
'momentum': self.momentum,
'epsilon': self.epsilon,
'center': self.center,
'scale': self.scale,
'beta_initializer': initializers.serialize(self.beta_initializer),
'gamma_initializer': initializers.serialize(self.gamma_initializer),
'moving_mean_initializer':
initializers.serialize(self.moving_mean_initializer),
'moving_variance_initializer':
initializers.serialize(self.moving_variance_initializer),
'beta_regularizer': regularizers.serialize(self.beta_regularizer),
'gamma_regularizer': regularizers.serialize(self.gamma_regularizer),
'beta_constraint': constraints.serialize(self.beta_constraint),
'gamma_constraint': constraints.serialize(self.gamma_constraint)
}
base_config = super(ConditionalBatchNormalization, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def compute_output_shape(self, input_shape):
return input_shape[0]
if __name__ == '__main__':
x = Input((10,))
c1 = Input(batch_shape=(1,), dtype=tf.bool)
c2 = Input(batch_shape=(1,), dtype=tf.bool)
h = ConditionalBatchNormalization()([x, c1, c2])
model = Model([x, c1, c2], h)
model.compile(optimizer=Adam(1e-4), loss='mse')
c1 = K.constant([False]*100, dtype=tf.bool)
c2 = K.constant([True]*100, dtype=tf.bool)
X = np.random.rand(100, 10)
Y = np.random.rand(100, 10)
model.train_on_batch(x=[X, c1, c2], y=Y)
c1 = K.constant([False]*100, dtype=tf.bool)
c2 = K.constant([True]*100, dtype=tf.bool)
model.train_on_batch(x=[X, c1, c2], y=Y)
`
Upvotes: 2
Views: 2046
Reputation: 11895
I would use tf.case to express your conditional statements:
normed_training, mean, variance = \
tf.case({
c1: lambda: K.normalize_batch_in_training(
inputs, self.gamma1, self.beta1, reduction_axes,
epsilon=self.epsilon),
c2: lambda: K.normalize_batch_in_training(
inputs, self.gamma2, self.beta2, reduction_axes,
epsilon=self.epsilon)
},
default=lambda: K.normalize_batch_in_training(
inputs, self.gamma3, self.beta3, reduction_axes,
epsilon=self.epsilon)
)
Note also that tf.case requires the conditions c1
and c2
to be of type tf.Tensor, so I defined them as follows:
c1 = K.constant(False, dtype=tf.bool)
c2 = K.constant(False, dtype=tf.bool)
Upvotes: 2