Reputation: 97
I have two DataFrames of arbitrary shape of the type:
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 NaN
3 A3 NaN NaN
4 A4 NaN NaN
and
A B C
2 NaN NaN C2
3 NaN B3 C3
4 NaN B4 C4
5 A5 B5 C5
6 A6 B6 C6
The two DataFrames have overlapping indexes. Where there is an overlap, for a given column, there is a non-NaN
in one DataFrame, and a NaN
in the other. How can I concatenate these such that I can achieve a DataFrame with all values and no NaN
s:
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
4 A4 B4 C4
5 A5 B5 C5
6 A6 B6 C6
My proposed solution is:
df3 = pd.concat([pd.concat([df1[col].dropna(), df2[col].dropna()]) for col in df1.columns], axis=1)
However, ideally I would not work column-by-column.
Upvotes: 4
Views: 7575
Reputation: 75080
using df.fillna()
and df.append()
with dropna()
df1.fillna(df2).append(df2).dropna()
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
4 A4 B4 C4
5 A5 B5 C5
6 A6 B6 C6
Upvotes: 1
Reputation: 13255
Use combine_first
:
df = df1.combine_first(df2)
print(df)
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
4 A4 B4 C4
5 A5 B5 C5
6 A6 B6 C6
Upvotes: 13