Reputation: 6147
How can I convert a pandas dataframe to a dict using unique column values as the keys for the dictionary? In this case I want to use unique username's as the key.
Here is my progress so far based on information found on here and online.
My test dataframe:
import pandas
import pprint
df = pandas.DataFrame({
'username': ['Kevin', 'John', 'Kevin', 'John', 'Leslie', 'John'],
'sport': ['Soccer', 'Football', 'Racing', 'Tennis', 'Baseball', 'Bowling'],
'age': ['51','32','20','19','34','27'],
'team': ['Cowboyws', 'Packers', 'Sonics', 'Raiders', 'Wolves', 'Lakers']
})
I can create a dictionary by doing this:
dct = df.to_dict(orient='records')
pprint.pprint(dct, indent=4)
>>>>[{'age': '51', 'sport': 'Soccer', 'team': 'Cowboyws', 'username': 'Kevin'},
{'age': '32', 'sport': 'Football', 'team': 'Packers', 'username': 'John'},
{'age': '20', 'sport': 'Racing', 'team': 'Sonics', 'username': 'Kevin'},
{'age': '19', 'sport': 'Tennis', 'team': 'Raiders', 'username': 'John'},
{'age': '34', 'sport': 'Baseball', 'team': 'Wolves', 'username': 'Leslie'},
{'age': '27', 'sport': 'Bowling', 'team': 'Lakers', 'username': 'John'}]
I tried using the groupby and apply method which got me closer but it converts all the values to lists. I want them to remain as dictionaries so i can retain the each value's key:
result = df.groupby('username').apply(lambda x: x.values.tolist()).to_dict()
pprint.pprint(result, indent=4)
{ 'John': [ ['32', 'Football', 'Packers', 'John'],
['19', 'Tennis', 'Raiders', 'John'],
['27', 'Bowling', 'Lakers', 'John']],
'Kevin': [ ['51', 'Soccer', 'Cowboyws', 'Kevin'],
['20', 'Racing', 'Sonics', 'Kevin']],
'Leslie': [['34', 'Baseball', 'Wolves', 'Leslie']]}
This is the desired result I want:
{
'John': [{'age': '32', 'sport': 'Football', 'team': 'Packers', 'username': 'John'},
{'age': '19', 'sport': 'Tennis', 'team': 'Raiders', 'username': 'John'},
{'age': '27', 'sport': 'Bowling', 'team': 'Lakers', 'username': 'John'}],
'Kevin': [{'age': '51', 'sport': 'Soccer', 'team': 'Cowboyws', 'username': 'Kevin'},
{'age': '20', 'sport': 'Racing', 'team': 'Sonics', 'username': 'Kevin'}],
'Leslie': [{'age': '34', 'sport': 'Baseball', 'team': 'Wolves', 'username': 'Leslie'}]
}
Upvotes: 3
Views: 3285
Reputation: 323316
I prefer using for loop here , also you may want to drop
the username
columns , since it is redundant
d = {x: y.drop('username',1).to_dict('r') for x , y in df.groupby('username')}
d
Out[212]:
{'John': [{'age': '32', 'sport': 'Football', 'team': 'Packers'},
{'age': '19', 'sport': 'Tennis', 'team': 'Raiders'},
{'age': '27', 'sport': 'Bowling', 'team': 'Lakers'}],
'Kevin': [{'age': '51', 'sport': 'Soccer', 'team': 'Cowboyws'},
{'age': '20', 'sport': 'Racing', 'team': 'Sonics'}],
'Leslie': [{'age': '34', 'sport': 'Baseball', 'team': 'Wolves'}]}
Upvotes: 2
Reputation: 402814
Use groupby
and apply
. Inside the apply, call to_dict
with the "records" orient (similar to what you've figured out already).
df.groupby('username').apply(lambda x: x.to_dict(orient='r')).to_dict()
Upvotes: 4