Reputation: 161
I referenced almost all similar questions but did not find an answer. Error checking is recommended by many people, So I tried to use CHECKED_CALL()
type macro to make the program strong, but my code has encountered two problems:
As the title says, I got a warning message, but before I used #pragma hd_warning_disable
, I got the error message:
cuEntityIDBuffer.cu(9): error: identifier "stderr" is undefined in device code
When I compiled the maintest.cpp
, I got another error:
EDIT:
g++ -c maintest.cpp -std=c++11
cuEntityIDBuffer.h:1:27: fatal error: thrust/reduce.h: No such file or directory
However, it works fine when compiling cuEntityIDBuffer.cu
cuEntityIDBuffer.h
is also included in this file.
nvcc -arch=sm_35 -Xcompiler '-fPIC' -dc cuEntityIDBuffer.cu
Both cuEntityIDBuffer.cu
and maintest.cpp
#include "cuEntityIDBuffer.h"
, but maintest.cpp
throws an error, I have no ideas about it.
The code is below:
cuEntityIDBuffer.h
#include <thrust/reduce.h>
#include <thrust/execution_policy.h>
#include <stdio.h>
#include <assert.h>
#include <cuda_runtime.h>
#ifdef __CUDACC__
#define CUDA_CALLABLE_MEMBER __host__ __device__
#else
#define CUDA_CALLABLE_MEMBER
#endif
class cuEntityIDBuffer
{
public:
CUDA_CALLABLE_MEMBER cuEntityIDBuffer();
CUDA_CALLABLE_MEMBER cuEntityIDBuffer(unsigned int* buffer);
CUDA_CALLABLE_MEMBER void cuCallBackEntityIDBuffer(unsigned int* buffer);
CUDA_CALLABLE_MEMBER ~cuEntityIDBuffer();
CUDA_CALLABLE_MEMBER void cuTest();
private:
size_t buffersize;
unsigned int* cuBuffer;
};
cuEntityIDBuffer.cu
#include "cuEntityIDBuffer.h"
#include <stdio.h>
#pragma hd_warning_disable
#define nTPB 256
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
__global__ void mykernel(unsigned int* buffer)
{
int idx = threadIdx.x + (blockDim.x * blockIdx.x);
buffer[idx]++;
//other things.
}
cuEntityIDBuffer::cuEntityIDBuffer()
{
buffersize=1024;
gpuErrchk(cudaMalloc(&cuBuffer, buffersize * sizeof(unsigned int)));
}
cuEntityIDBuffer::cuEntityIDBuffer(unsigned int* buffer)
{
buffersize=1024;
gpuErrchk(cudaMalloc(&cuBuffer, buffersize * sizeof(unsigned int)));
gpuErrchk(cudaMemcpy(cuBuffer,buffer,buffersize*sizeof(unsigned int),cudaMemcpyHostToDevice));
}
void cuEntityIDBuffer::cuCallBackEntityIDBuffer(unsigned int* buffer)
{
gpuErrchk(cudaMemcpy(buffer,cuBuffer,buffersize*sizeof(unsigned int),cudaMemcpyDeviceToHost));
}
cuEntityIDBuffer::~cuEntityIDBuffer()
{
gpuErrchk(cudaFree((cuBuffer)));
}
void cuEntityIDBuffer::cuTest()
{
mykernel<<<((buffersize+nTPB-1)/nTPB),nTPB>>>(cuBuffer);
gpuErrchk(cudaPeekAtLastError());
}
maintest.cpp
#include "cuEntityIDBuffer.h"
#include <iostream>
int main(int argc, char const *argv[])
{
unsigned int *h_buf;
h_buf=malloc(1024*sizeof(unsigned int));
cuEntityIDBuffer d_buf(h_buf);
d_buf.cuTest();
d_buf.cuCallBackEntityIDBuffer(h_buf);
return 0;
}
Is it the wrong way that I used the CHECKED_CALL()
type macro or is there a problem with my code organization? any suggestion is appreciated.
Upvotes: 4
Views: 6934
Reputation: 1731
Your methods are defined as __host__
and __device
, which means they will be compiled once for CPU and once for the device. I don't see any big issue for the CPU version. However, you have two problems for the device version:
cuEntityIDBuffer.cu(9): error: identifier "stderr" is undefined in device code
is very clear, you're trying to use the CPU variable stderr
in device code.
warning: calling a __host__ function from a __host__ __device__ function is not allowed
is the same kind of problem: without any of __host__
, __device__
or __global__
attribute, symbols are implicitly set to __host__
, which means in your case that the device version of your methods is trying to use gpuAssert
which is only on CPU side.
For cuEntityIDBuffer.h:1:27: fatal error: thrust/reduce.h: No such file or directory
, as @Talonmies pointed out, any Thrust code has to be built using nvcc.
Upvotes: 3