Josin Mathew
Josin Mathew

Reputation: 45

How can I convert unicode to string of a dataframe column?

I have a spark dataframe which has a column 'X'.The column contains elements which are in the form:

u'[23,4,77,890,455,................]'

. How can I convert this unicode to list.That is my output should be

[23,4,77,890,455...................]

. I have apply it for each element in the 'X' column.

I have tried df.withColumn("X_new", ast.literal_eval(x)) and got the error

"Malformed String"

I also tried

df.withColumn("X_new", json.loads(x)) and got the error "Expected String or Buffer"

and

df.withColumn("X_new", json.dumps(x)) which says JSON not serialisable.

and also

df_2 = df.rdd.map(lambda x: x.encode('utf-8')) which says rdd has no attribute encode.

I dont want to use collect and toPandas() because its memory consuming.(But if thats the only way please do tell).I am using Pyspark

Update: cph_sto gave the answer using UDF.Though it worked well,I find that it is Slow.Can Somebody suggest any other method?

Upvotes: 1

Views: 10210

Answers (3)

peporro
peporro

Reputation: 83

Since it's a string, you could remove the first and last characters: From '[23,4,77,890,455]' to '23,4,77,890,455' Then apply the split() function to generate an array, taking , as the delimiter.

Upvotes: 1

cph_sto
cph_sto

Reputation: 7585

import ast
from pyspark.sql.functions import udf
values = [(u'[23,4,77,890.455]',10),(u'[11,2,50,1.11]',20),(u'[10.05,1,22.04]',30)]
df = sqlContext.createDataFrame(values,['list','A'])
df.show()
+-----------------+---+
|             list|  A|
+-----------------+---+
|[23,4,77,890.455]| 10|
|   [11,2,50,1.11]| 20|
|  [10.05,1,22.04]| 30|
+-----------------+---+    

# Creating a UDF to convert the string list to proper list
string_list_to_list = udf(lambda row: ast.literal_eval(row))
df = df.withColumn('list',string_list_to_list(col('list')))
df.show()
+--------------------+---+
|                list|  A|
+--------------------+---+
|[23, 4, 77, 890.455]| 10|
|   [11, 2, 50, 1.11]| 20|
|   [10.05, 1, 22.04]| 30|
+--------------------+---+

Extension of the Q, as asked by OP -

# Creating a UDF to find length of resulting list.
length_list = udf(lambda row: len(row))
df = df.withColumn('length_list',length_list(col('list')))
df.show()
+--------------------+---+-----------+
|                list|  A|length_list|
+--------------------+---+-----------+
|[23, 4, 77, 890.455]| 10|          4|
|   [11, 2, 50, 1.11]| 20|          4|
|   [10.05, 1, 22.04]| 30|          3|
+--------------------+---+-----------+

Upvotes: 2

kandhar vishnu
kandhar vishnu

Reputation: 1

Please use the below code to ignore unicode

df.rdd.map(lambda x: x.encode("ascii","ignore"))

Upvotes: -2

Related Questions