Reputation: 23938
I have a string column with commas. I want to convert this single column into multiple labeled columns, with values filled in appropriately. The output data frame would have 3 columns (A, B, and C). Row 1 would have columns A and B filled in with "Yes", and C with "No". Row 2 would have all 3 columns filled with "Yes", etc.
df1 <- data.frame(X= c("A, B", "A, B, C", "A", "A, C"))
df1
X
1 A, B
2 A, B, C
3 A
4 A, C
Required Output
A B C
Yes Yes No
Yes Yes Yes
Yes No No
Yes No Yes
Any hint, please.
Upvotes: 1
Views: 1319
Reputation: 5281
Here is another solution in base
lets <- strsplit(as.character(.subset2(df1,1L)), ', ')
lets_unique <- unique(unlist(lets))
vapply(seq_along(lets_unique),function(k)grepl(lets_unique[k],lets),logical(length(lets)))
# [,1] [,2] [,3]
# [1,] TRUE TRUE FALSE
# [2,] TRUE TRUE TRUE
# [3,] TRUE FALSE FALSE
# [4,] TRUE FALSE TRUE
Upvotes: 1
Reputation: 99371
Via stringi
stringi::stri_split_fixed(df1$X, ", ", simplify = TRUE) != ""
# [,1] [,2] [,3]
# [1,] TRUE TRUE FALSE
# [2,] TRUE TRUE TRUE
# [3,] TRUE FALSE FALSE
# [4,] TRUE TRUE FALSE
TRUE
/FALSE
is essentially yes
/no
but if you need the character matrix you can always do ifelse(., "yes", "no")
and retain the matrix structure.
Upvotes: 3
Reputation: 887901
Here is an option using base R
with table
. We split the 'X' column by ,
into a list
of vector
s, convert it to a two column data.frame
with stack
, get the frequency with table
and convert it to logical
table(stack(setNames(strsplit(as.character(df1$X), ", +"),
seq_len(nrow(df1))))[2:1]) > 0
# values
#ind A B C
# 1 TRUE TRUE FALSE
# 2 TRUE TRUE TRUE
# 3 TRUE FALSE FALSE
# 4 TRUE FALSE TRUE
Upvotes: 3
Reputation: 323376
Using splitstackshape
library(splitstackshape)
newdf=cSplit_e(df1, "X", sep = ", ",type = "character")
newdf[newdf==1]='Yes'
newdf[is.na(newdf)]='No'
newdf
X X_A X_B X_C
1 A, B Yes Yes No
2 A, B, C Yes Yes Yes
3 A Yes No No
4 A, C Yes No Yes
Upvotes: 2
Reputation: 11957
A slightly different approach that doesn't rely on grouping. The final conversion to "Yes/"No" is also performed column-wise, rather than relying on a conversion from long to wide data. For a very large data set this may be somewhat more efficient.
df2 <- df1 %>%
mutate(row_num = 1:n()) %>%
separate_rows(X) %>%
spread(X, 1) %>%
select(-row_num) %>%
mutate_all(~ifelse(!is.na(.), 'Yes', 'No'))
A B C
1 Yes Yes No
2 Yes Yes Yes
3 Yes No No
4 Yes No Yes
Upvotes: 2
Reputation: 23608
Something like this:
library(tidyverse)
df1 %>%
mutate(id = row_number()) %>%
separate_rows(X) %>%
group_by(id) %>%
mutate(Y = "yes") %>%
spread(X, Y, fill = "no")
# A tibble: 4 x 4
# Groups: id [4]
id A B C
<int> <chr> <chr> <chr>
1 1 yes yes no
2 2 yes yes yes
3 3 yes no no
4 4 yes no yes
Upvotes: 4