Reputation: 1293
I have two Dataframes one with set of dates (df1) and another with set of emp_ids (df2). I am trying to create a new Dataframe such that every emp_id in df2 is tagged to every date in df1.
Given below is how my Dataframe look like
df1
2018-01-01
2018-01-02
2018-01-03
2018-01-04
df2
emp_1
emp_2
emp_3
Expected output:
2018-01-01,emp_1
2018-01-02,emp_1
2018-01-03,emp_1
2018-01-04,emp_1
2018-01-01,emp_2
2018-01-02,emp_2
2018-01-03,emp_2
2018-01-04,emp_2
2018-01-01,emp_3
2018-01-02,emp_3
2018-01-03,emp_3
2018-01-04,emp_3
I converted the date column to a string and tried doing the below but it returned an empty Dataframe
I tried doing pd.merge(df1, df2])
Upvotes: 0
Views: 82
Reputation: 586
What you're trying to do is called carthesian product
. In pandas
you can do it that way:
df1['key'] = 0
df2['key'] = 0
result = df1.merge(df2, how='outer').drop('key',axis= 1)
Edit : to proove it works
df1 = pd.DataFrame(['2018-01-01','2018-01-02','2018-01-03','2018-01-04'],columns=['date'])
df2 = pd.DataFrame(['emp_1','emp_2','emp_3'],columns=['id'])
# res
df1['key'] = 0
df2['key'] = 0
res = df1.merge(df2, how='outer').drop('key',axis= 1)
# print
print(res.sort_values('id'))
Console :
date id
0 2018-01-01 emp_1
3 2018-01-02 emp_1
6 2018-01-03 emp_1
9 2018-01-04 emp_1
1 2018-01-01 emp_2
4 2018-01-02 emp_2
7 2018-01-03 emp_2
10 2018-01-04 emp_2
2 2018-01-01 emp_3
5 2018-01-02 emp_3
8 2018-01-03 emp_3
11 2018-01-04 emp_3
Upvotes: 2