Reputation: 654
I'd like to read an excel table with Panda, and create a list of tuples. Then, I want to convert the list into a dictionary which has a tuple as key. How can I do that?
Here is the table that I am reading;
A B 0.6
A C 0.7
C D 1.0
C A 1.2
D B 0.7
D C 0.6
Here is how I read my table;
import pandas as pd
df= pd.read_csv("my_file_name.csv", header= None)
my_tuple = [tuple(x) for x in df.values]
Now, I want to have the following structure.
my_data = {("A", "B"): 0.6,
("A", "C"): 0.7,
("C", "D"): 1,
("C", "A"): 1.2,
("D", "B"): 0.7,
("D", "C"): 0.6}
Upvotes: 2
Views: 365
Reputation: 38415
Set_index and to_dict
df.set_index(['a', 'b']).c.to_dict()
{('A', 'B'): 0.6,
('A', 'C'): 0.7,
('C', 'A'): 1.2,
('C', 'D'): 1.0,
('D', 'B'): 0.7,
('D', 'C'): 0.6}
Option2: Another solution using zip
dict(zip(df[['A', 'B']].apply(tuple, 1), df['C']))
Option 3:
k = df[['A', 'B']].to_records(index=False).tolist()
dict(zip(k, df['C']))
Upvotes: 3
Reputation: 59549
A comprehension will work well for smaller frames:
dict((tuple((a, b)), c) for a,b,c in df.values)
#{('A', 'B'): 0.6,
# ('A', 'C'): 0.7,
# ('C', 'A'): 1.2,
# ('C', 'D'): 1.0,
# ('D', 'B'): 0.7,
# ('D', 'C'): 0.6}
If having issues with ordering:
from collections import OrderedDict
d = OrderedDict((tuple((a, b)), c) for a,b,c in df.values)
#OrderedDict([(('A', 'B'), 0.6),
# (('A', 'C'), 0.7),
# (('C', 'D'), 1.0),
# (('C', 'A'), 1.2),
# (('D', 'B'), 0.7),
# (('D', 'C'), 0.6)])
Upvotes: 1
Reputation: 105
If you would use simple code:
this one would not use any importing something like panda :
def change_csv(filename):
file_pointer = open(filename, 'r')
data = file_pointer.readlines()
dict = {}
file_pointer.close()
for each_line in data:
a, b, c = each_line.strip().split(" ")
dict[a, b] = c
return dict
so out put of this yours.
and out put is :
{('A', 'B'): '0.6', ('A', 'C'): '0.7', ('C', 'D'): '1.0', ('C', 'A'): '1.2', ('D', 'B'): '0.7', ('D', 'C'): '0.6'}
Upvotes: 1
Reputation: 2337
This is less concise than @Vaishali's answer but gives you more of an idea of the steps.
vals1 = df['A'].values
vals2 = df['B'].values
vals3 = df['C'].values
dd = {}
for i in range(len(vals1)):
key = (vals1[i], vals2[i])
value = vals3[i]
dd[key] = value
{('A', 'B'): '0.6',
('A', 'C'): '0.7',
('C', 'D'): '1.0',
('C', 'A'): '1.2',
('D', 'B'): '0.7',
('D', 'C'): '0.6'}
Upvotes: 1
Reputation: 901
Jan - here's one idea: just create a key column using the pandas apply function to generate a tuple of your first 2 columns, then zip them up to a dict.
import pandas as pd
df = pd.read_clipboard()
df.columns = ['first', 'second', 'value']
df.head()
def create_key(row):
return (row['first'], row['second'])
df['key'] = df.apply(create_key, axis=1)
dict(zip(df['key'], df['value']))
{('A', 'C'): 0.7,
('C', 'A'): 1.2,
('C', 'D'): 1.0,
('D', 'B'): 0.7,
('D', 'C'): 0.6}
Upvotes: 1