Reputation: 43
I'm trying to get Keras to train a multiclass classification model that can be written in a network like this:
The only set of trainable parameters are those , all the rest is given. The functions fi are combinations of usual mathematical functions (for example .Sigma stands for summing the previous terms and softmax is the usual function. The (x1,x2,...xn) are elements of train or test set and are a specific subset of the original data already selected.
The model in more depth:
Specificaly, given (x_1,x_2,...,x_n) an input in train or test set, the network evaluates
where fi are given mathematical functions, are rows of a particular subset of the original data and the coefficients are the parameters I want to train. As I'm using keras, I expect it to add a bias term to each row.
After the above evaluation, I will apply a softmax layer (each of the m lines above are numbers that will be inputs for the softmax function).
At the end I want to compile the model and run model.fit as usual.
The problem is that I couln't translate the expression to keras sintax.
My attempt:
Following the network scratch above, I first tried to consider each of the expressions of the form as lambda layers in a Sequential Model, but the best I could get to work was a combination of a dense layer with linear activation (which would play the role of a row's parameters: ) followed by a Lambda layer outputting a vector without the required summation, as follows:
model = Sequential()
#single row considered:
model.add(Lambda(lambda x: f_fixedRow(x), input_shape=(nFeatures,)))
#parameters set after lambda layer to get (a1*f(x1,y1),...,an*f(xn,yn)) and not (f(a1*x1,y1),...,f(an*xn,yn))
model.add(Dense(nFeatures, activation='linear'))
#missing summation: sum(x)
#missing evaluation of f in all other rows
model.add(Dense(classes,activation='softmax',trainable=False)) #should get all rows
model.compile(optimizer='sgd',
loss='categorical_crossentropy',
metrics=['accuracy'])
Also, I had to define the function in the lambda function call with the argument already fixed (because the lambda function could have only the input layers as variable):
def f_fixedRow(x):
#picking a particular row (as a vector) to evaluate f in (f works element-wise)
y=tf.constant(value=x[0,:],dtype=tf.float32)
return f(x,y)
I managed to write the f function with tensorflow (working element-wise in a row), although this is a possible source for problems in my code (and the above workaround seems unnatural).
I also thought that if I could properly write the element-wise sum of the vector in the aforementioned attempt I could repeat the same procedure in a parallelized manner with the keras Functional API and then insert the output of each parallel model in a softmax function, as I need.
Another approach that I considered was to train the parameters keeping their natural matrix structure seen in Network Description, maybe writing a matrix Lambda layer, but I could not find anything related to this idea.
Anyway, I'm not sure what is a good way to work with this model within keras, maybe I'm missing an important point because of the non standard way the parameters are written or lack of experience with tensorflow. Any suggestions are welcome.
Upvotes: 4
Views: 262
Reputation: 86600
For this answer, it's important that f
be a tensor function that operates elementwise. (No iterating). This is reasonably easy to have, just check the keras backend functions.
Assumptions:
x_pk
set is constant, otherwise this solution must be reviewed. f
is elementwise (if not, please show f
for better code)Your model will need x_pk
as a tensor input. And you should do that in a functional API model.
import keras.backend as K
from keras.layers import Input, Lambda, Activation
from keras.models import Model
#x_pk data
x_pk_numpy = select_X_pk_samples(x_train)
x_pk_tensor = K.variable(x_pk_numpy)
#number of rows in x_pk
m = len(x_pk_numpy)
#I suggest a fixed batch size for simplicity
batch = some_batch_size
First let's work on the function that will take x
and x_pk
calling f
.
def calculate_f(inputs): #inputs will be a list with x and x_pk
x, x_pk = inputs
#since f will work elementwise, let's replicate x and x_pk so they have equal shapes
#please explain f for better optimization
# x from (batch, n) to (batch, m, n)
x = K.stack([x]*m, axis=1)
# x_pk from (m, n) to (batch, m, n)
x_pk = K.stack([x_pk]*batch, axis=0)
#a batch size of 1 could make this even simpler
#a variable batch size would make this more complicated
#certain f functions could make this process unnecessary
return f(x, x_pk)
Now, different from a Dense
layer, this formula is using the a_pk
weights multiplied elementwise. So we need a custom layer:
class ElementwiseWeights(Layer):
def __init__(self, **kwargs):
super(ElementwiseWeights, self).__init__(**kwargs)
def build(self, input_shape):
weight_shape = (1,) + input_shape[1:] #shape (1, m, n)
self.kernel = self.add_weight(name='kernel',
shape=weight_shape,
initializer='uniform',
trainable=True)
super(ElementwiseWeights, self).build(input_shape)
def compute_output_shape(self,input_shape):
return input_shape
def call(self, inputs):
return self.kernel * inputs
Now let's build our functional API model:
#x_pk model tensor input
x_pk = Input(tensor=x_pk_tensor) #shape (m, n)
#x usual input with fixed batch size
x = Input(batch_shape=(batch,n)) #shape (batch, n)
#calculate F
out = Lambda(calculate_f)([x, xp_k]) #shape (batch, m, n)
#multiply a_pk
out = ElementwiseWeights()(out) #shape (batch, m, n)
#sum n elements, keep m rows:
out = Lambda(lambda x: K.sum(x, axis=-1))(out) #shape (batch, m)
#softmax
out = Activation('softmax')(out) #shape (batch,m)
Continue this model with whatever you want and finish it:
model = Model([x, x_pk], out)
model.compile(.....)
model.fit(x_train, y_train, ....) #perhaps you might need .fit([x_train], ytrain,...)
f
You can have the proposed f
like this:
#create the n coefficients:
coefficients = np.array([c0, c1, .... , cn])
coefficients = coefficients.reshape((1,1,n))
def f(x, x_pk):
c = K.variable(coefficients) #shape (1, 1, n)
out = (x - x_pk) / c
return K.exp(out)
f
would accept x
with shape (batch, 1, n)
, without the stack
used in the calculate_f
function. x_pk
with shape (1, m, n)
, allowing variable batch size. But I'm not sure it's possible to have both of these shapes together. Testing this might be interesting.
Upvotes: 2