skan
skan

Reputation: 7720

How to apply a table to several columns with data.table?

Say I have a data.table

prueba <- data.table(aa=1:7,
                     bb=c(1,2,NA,NA,3,1,1),
                     cc=c(1,2,NA,NA,3,1,1),
                   YEAR=c(1,1,1,2,2,2,2))

and I want to get the table of missings at each column from a given set, for example aa, bb and cc.

The result should be like this:

    aa   bb   cc
1:   0    2    2    
0:   7    0    0    

or its transposed form or with other labels.

I've tried with

prueba[,lapply(.SD, function(x) as.list(  table(
       factor(is.na(x), levels=c("0","1"))))),
       .SDcols=c("aa","bb", "cc")]

but I'm getting this instead:

    aa   bb   cc
1:   7    5    5    
0:   7    2    2    

I think it has to do with the fact that table drops unused levels. But I've unsuccessfully tried with xtabs and all sort of hacking.

I could get something ugly with

sapply(c("aa","bb","cc"), function(x) prueba[,as.list(
      table(is.na(get(x))))])

Upvotes: 2

Views: 106

Answers (4)

chinsoon12
chinsoon12

Reputation: 25225

Here is another suggestion that should be general enough. First, build contingency table based on requirements. Next, convert table output into a list and rbindlist all the results together. Finally, replace NA with 0 counts.

output <- prueba[, rbindlist(
        lapply(.SD, function(x) as.list(table(is.na(x)))), 
        fill=TRUE, 
        idcol=TRUE), 
    .SDcols=aa:cc]

output[, lapply(.SD, function(x) replace(x, is.na(x), 0L))]

output:

   .id FALSE TRUE
1:  aa     7    0
2:  bb     5    2
3:  cc     5    2

edit: adding another general approach:

#build and flatten contingency table
tab <- prueba[, as.list(unlist(lapply(.SD, function(x) table(is.na(x))))),
    .SDcols=aa:cc]

#melt, split original column names and then pivot
dcast(
    melt(tab, measure.vars=names(tab))[, 
        c("V1","Factor") := tstrsplit(variable, split="\\.")],
    Factor ~ V1, 
    function(x) x[1L], 
    fill=0L) 

output:

   Factor aa bb cc
1:  FALSE  7  5  5
2:   TRUE  0  2  2

edit: add timings

set.seed(0L)
sz <- 1e6
nc <- 10
DT <- as.data.table(matrix(sample(c(NA_integer_, 1L:10L), sz*nc, TRUE), ncol=nc))
setnames(DT, paste0("C", 1L:nc))
cols <- names(DT)

mtd1 <- function() {
    DT[, table(is.na(.SD), names(.SD)[col(.SD)]), .SDcols=cols]
}

mtd2 <- function() {
    DT[, table(is.na(.SD), rep(names(.SD), each=.N)), .SDcols=cols]
}

mtd3 <- function() {
    melt(DT[, ..cols], measure.vars=cols)[, table(is.na(value), variable)]
}

mtd4 <- function() {
    tab <- DT[, as.list(unlist(lapply(.SD, function(x) table(is.na(x))))),
        .SDcols=cols]

    dcast(melt(tab, measure.vars=names(tab))[, c("V1","Factor") := tstrsplit(variable, split="\\.")],
        Factor ~ V1, function(x) x[1L], fill=0L)
}

mtd5 <- function() {
    output <- DT[, rbindlist(lapply(.SD, function(x) as.list(table(is.na(x)))), fill=TRUE, idcol=TRUE),
        .SDcols=cols]

    output[, lapply(.SD, function(x) replace(x, is.na(x), 0L))]
}

library(microbenchmark)
microbenchmark(mtd1(), mtd2(), mtd3(), mtd4(), mtd5(), times=3L)

timings:

Unit: seconds
   expr      min       lq     mean   median       uq      max neval cld
 mtd1() 5.044369 5.049252 5.086534 5.054135 5.107617 5.161100     3   b
 mtd2() 5.106796 5.110014 5.474269 5.113232 5.658005 6.202778     3   b
 mtd3() 2.395127 2.461463 2.509938 2.527799 2.567344 2.606888     3  a 
 mtd4() 2.138672 2.142300 2.145895 2.145927 2.149506 2.153084     3  a 
 mtd5() 2.113367 2.175346 2.228162 2.237325 2.285560 2.333794     3  a 

Upvotes: 2

Frank
Frank

Reputation: 66819

Maybe use table:

prueba[, table(is.na(.SD), names(.SD)[col(.SD)]), .SDcols=aa:cc]

        aa bb cc
  FALSE  7  5  5
  TRUE   0  2  2

This is essentially treating it like a matrix.

Some alternatives:

prueba[, table(is.na(.SD), rep(names(.SD), each=.N)), .SDcols=aa:cc]

melt(prueba[, aa:cc])[, table(is.na(value), variable)]

Upvotes: 4

skan
skan

Reputation: 7720

OK, I've found a solution, a little bit convoluted:

prueba[, lapply(.SD, function(x) as.list( table(factor(
is.na(x), levels=c(F,T)))) ), .SDcols=c("aa","bb", "cc")]

There should be an easier way.

Upvotes: 1

Sven Hohenstein
Sven Hohenstein

Reputation: 81693

Here's an approach with base R:

rbind(tmp <- colSums(is.na(prueba[ , -"YEAR"])), nrow(prueba) - tmp)
#      aa bb cc
# [1,]  0  2  2
# [2,]  7  5  5

Upvotes: 3

Related Questions