Reputation: 1387
let's say we have an array of cartesian indices in Julia
julia> typeof(indx)
Array{CartesianIndex{2},1}
Now we want to plot them as a scatter-plot using PyPlot. so we should convert the indx-Array of Cartesian to a 2D-Matrix so we can plot it like this:
PyPlot.scatter(indx[:, 1], indx[:, 2])
How can i convert an Array of type Array{CartesianIndex{2},1} to a 2D-Matrix of type Array{Int,2}
By the way here is a code snippet how to produce a dummy Array of cartesianindex:
A = rand(1:10, 5, 5)
indx = findall(a -> a .> 5, A)
typeof(indx) # this is an Array{CartesianIndex{2},1}
Thanks
Upvotes: 5
Views: 3217
Reputation: 12179
An easy and generic way is
julia> as_ints(a::AbstractArray{CartesianIndex{L}}) where L = reshape(reinterpret(Int, a), (L, size(a)...))
as_ints (generic function with 1 method)
julia> as_ints(indx)
2×9 reshape(reinterpret(Int64, ::Array{CartesianIndex{2},1}), 2, 9) with eltype Int64:
1 3 4 1 2 4 1 1 4
2 2 2 3 3 3 4 5 5
This works for any dimensionality, making the first dimension the index into the CartesianIndex.
Upvotes: 8
Reputation: 10127
One possible way is hcat(getindex.(indx, 1), getindex.(indx,2))
julia> @btime hcat(getindex.($indx, 1), getindex.($indx,2))
167.372 ns (6 allocations: 656 bytes)
10×2 Array{Int64,2}:
4 1
3 2
4 2
1 3
4 3
5 3
2 4
5 4
1 5
4 5
However, note that you don't need to - and therefore probably shouldn't - bring your indices to 2D-Matrix form. You could simply do
PyPlot.scatter(getindex.(indx, 1), getindex.(indx, 2))
Upvotes: 5