Reputation:
I've been trying to run a confusion matrix after my CNN model ran.
My model is classifying dogs/bunnies.
The following is what I did:
I placed the photos of each class (dogs/bunnies) in separate folders inside two folders: training and testing.
Training directory-> Bunny directory -> bunny images
Training directory-> Puppy directory -> puppy images
Testing directory-> Bunny directory -> bunny images
Testing directory-> Puppy directory -> puppy images
I used the following code to get the images from the folders:
training_data = train_datagen.flow_from_directory('./images/train',
target_size = (28, 28),
batch_size = 86,
class_mode = 'binary',
color_mode='rgb',
classes=None)
test_data = test_datagen.flow_from_directory('./images/test',
target_size = (28, 28),
batch_size = 86,
class_mode = 'binary',
color_mode='rgb',
classes=None)
I used the following code to seperate the images into training/val.
data_generator = ImageDataGenerator(
validation_split=0.2,
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
)
train_generator = data_generator.flow_from_directory(
'./images/train',
target_size = (28, 28),
batch_size = 86,
class_mode = 'binary',
color_mode='rgb',
classes=None, subset="training"
)
validation_generator = data_generator.flow_from_directory(
'./images/train',
target_size = (28, 28),
batch_size = 86,
class_mode = 'binary',
color_mode='rgb',
classes=None, subset="validation"
)
history=classifier.fit_generator(
train_generator,
steps_per_epoch = (8000 / 86),
epochs = 2,
validation_data = validation_generator,
validation_steps = 8000/86,
callbacks=[learning_rate_reduction]
)
When I tried to run confusion_matrix(validation_data)
I get this error:
TypeError: confusion_matrix() missing 1 required positional argument: 'y_pred'
And when I run
#Confusion matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Predict the values from the validation dataset
Y_pred = classifier.predict(training_data)
# Convert predictions classes to one hot vectors
Y_pred_classes = np.argmax(Y_pred,axis = 1)
# Convert validation observations to one hot vectors
Y_true = np.argmax(training_data,axis = 1)
# compute the confusion matrix
confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)
# plot the confusion matrix
plot_confusion_matrix(confusion_mtx, classes = range(10))
sns.heatmap(confusion_mtx, annot=True, fmt='d')
I get the following error
AttributeError: 'DirectoryIterator' object has no attribute 'ndim'
Upvotes: 1
Views: 4192
Reputation: 543
As I understood you want to validate your classifier model using confusion matrix and heatmap. I have also made validation on Spam text classification so this is what you can do,
For confusion matrix,
from sklearn.metrics import confusion_matrix
conf_mat = confusion_matrix(y_test, y_pred)
print(conf_mat)
For Heatmap,
import seaborn as sns
conf_mat = confusion_matrix(y_test, y_pred)
conf_mat_normalized = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]
sns.heatmap(conf_mat_normalized)
plt.ylabel('True label')
plt.xlabel('Predicted label')
Simply means confusion matrix requires two parameters (Your actual truth label and predicted label lists)
Hope it will help you.
Upvotes: 3