code
code

Reputation: 5642

How to optimize Spark Job processing S3 files into Hive Parquet Table

I am new to Spark distributed development. I'm attempting to optimize my existing Spark job which takes up to 1 hour to complete.

Infrastructure:

In general, the Spark job performs the following:

private def processLines(lines: RDD[String]): DataFrame = {
    val updatedLines = lines.mapPartitions(row => ...)
    spark.createDataFrame(updatedLines, schema)
}

// Read S3 files and repartition() and cache()
val lines: RDD[String] = spark.sparkContext
    .textFile(pathToFiles, numFiles) 
    .repartition(2 * numFiles) // double the parallelism
    .cache()

val numRawLines = lines.count()

// Custom process each line and cache table
val convertedLines: DataFrame = processLines(lines)
convertedRows.createOrReplaceTempView("temp_tbl")
spark.sqlContext.cacheTable("temp_tbl")
val numRows = spark.sql("select count(*) from temp_tbl").collect().head().getLong(0)

// Select a subset of the data
val myDataFrame = spark.sql("select a, b, c from temp_tbl where field = 'xxx' ")

// Define # of parquet files to write using coalesce
val numParquetFiles = numRows / 1000000
var lessParts = myDataFrame.rdd.coalesce(numParquetFiles)
var lessPartsDataFrame = spark.sqlContext.createDataFrame(lessParts, myDataFrame.schema)
lessPartsDataFrame.createOrReplaceTempView('my_view')

// Insert data from view into Hive parquet table
spark.sql("insert overwrite destination_tbl 
           select * from my_view")    
lines.unpersist()

The app reads all S3 files => repartitions to twice the amount of files => caches the RDD => custom processes each line => creates a temp view/cache table => counts the num rows => selects a subset of the data => decrease the amount of partitions => creates a view of the subset of data => inserts to hive destination table using the view => unpersist the RDD.

I am not sure why it takes a long time to execute. Are the spark execution parameters incorrectly set or is there something being incorrectly invoked here?

Upvotes: 0

Views: 433

Answers (1)

Nonontb
Nonontb

Reputation: 476

Before looking at the metrics, I would try the following change to your code.

private def processLines(lines: DataFrame): DataFrame = {
  lines.mapPartitions(row => ...)
}

val convertedLinesDf = spark.read.text(pathToFiles)
    .filter("field = 'xxx'")
    .cache()

val numLines = convertedLinesDf.count() //dataset get in memory here, it takes time        
// Select a subset of the data, but it will be fast if you have enough memory
// Just use Dataframe API
val myDataFrame = convertedLinesDf.transform(processLines).select("a","b","c")

//coalesce here without converting to RDD, experiment what best
myDataFrame.coalesce(<desired_output_files_number>)
  .write.option(SaveMode.Overwrite)
  .saveAsTable("destination_tbl")
  • Caching is useless if you don't count the number of rows. And it will take some memory and add some GC pressure
  • Caching table may consume more memory and add more GC pressure
  • Converting Dataframe to RDD is costly as it implies ser/deser operations
  • Not sure what you trying to do with : val numParquetFiles = numRows / 1000000 and repartition(2 * numFiles). With your setup, 1000 files of 30MB each will give you 1000 partitions. It could be fine like this. Calling repartition and coalesce may trigger a shuffling operation which is costly. (Coalesce may not trigger a shuffle)

Tell me if you get any improvements !

Upvotes: 1

Related Questions