Reputation: 3667
I have two lists like so:
list1 = [{'id':'1','id2':'2'},{'id':'2','id2':'3'}]
list2 = [{'fname':'a','lname':'b'},{'fname':'c','lname':'d'}]
How do I combine the lists into one set of tuples for a pandas dataframe?
like so:
final_list = [{'id':'1','id2':'2','fname':'a','lname':'b'},{'id':'2','id2':'3','fname':'c','lname':'d'}]
the dataframe should look like this:
id id2 fname lname
1 2 a b
2 3 c d
tried this so far:
final_list = list(zip(list1,list2))
df = pd.DataFrame(final_list)
df:
0 1
[{nested_data}] [{nested_data}]
Upvotes: 4
Views: 1085
Reputation: 11657
A "pure" Python answer (ie no Pandas):
[{**x[0], **x[1]} for x in zip(list1, list2)]
> [{'id': '1', 'id2': '2', 'fname': 'a', 'lname': 'b'},
{'id': '2', 'id2': '3', 'fname': 'c', 'lname': 'd'}]
Edited by Scott Boston
pd.DataFrame([{**x[0], **x[1]} for x in zip(list1, list2)])
Output:
fname id id2 lname
0 a 1 2 b
1 c 2 3 d
Upvotes: 5
Reputation: 3306
You should do pd.concat.
As per the documentation, it seems that @jpp answer is better in terms of performance. I'd be more inclined to believe a benchmark, but honestly, I trust the pandas documentation.
import pandas as pd
df = pd.DataFrame(list1)
df2 = pd.DataFrame(list2)
result_df = pd.concat([df, df2], axis=1)
#result_df
# id id2 fname lname
#0 1 2 a b
#1 2 3 c d
Upvotes: 5
Reputation: 164663
You can just use pd.DataFrame.join
:
df = pd.DataFrame(list1).join(pd.DataFrame(list2))
print(df)
id id2 fname lname
0 1 2 a b
1 2 3 c d
Upvotes: 4