Reputation: 1631
Say I have two data frames:
df1:
A
0 a
1 b
df2:
A
0 a
1 c
I want the result to be the union of the two frames with an extra column showing the source data frame that the row belongs to. In case of duplicates, duplicates should be removed and the respective extra column should show both sources:
A B
0 a df1, df2
1 b df1
2 c df2
I can get the concatenated data frame (df3) without duplicates as follows:
import pandas as pd
df3=pd.concat([df1,df2],ignore_index=True).drop_duplicates().reset_index(drop=True)
I can't think of/find a method to have control over what element goes where. How can I add the extra column?
Thank you very much for any tips.
Upvotes: 14
Views: 14354
Reputation: 66
Use the command below:
df3 = pd.concat([df1.assign(source='df1'), df2.assign(source='df2')]) \
.groupby('A') \
.aggregate(list) \
.reset_index()
The result will be:
A source
0 a [df1, df2]
1 b [df1]
2 c [df2]
The assign
will add a column named source
with value df1
and df2
to your dataframes. groupby
command groups rows with same A
value to single row. aggregate
command describes how to aggregate other columns (source
) for each group of rows with same A
. I have used list
aggregate function so that the source
column be the list of values with same A
.
Upvotes: 3
Reputation: 7585
We use outer join to solve this -
df1 = pd.DataFrame({'A':['a','b']})
df2 = pd.DataFrame({'A':['a','c']})
df1['col1']='df1'
df2['col2']='df2'
df=pd.merge(df1, df2, on=['A'], how="outer").fillna('')
df['B']=df['col1']+','+df['col2']
df['B'] = df['B'].str.strip(',')
df=df[['A','B']]
df
A B
0 a df1,df2
1 b df1
2 c df2
Upvotes: 2
Reputation: 402493
Merge with an indicator
argument, and remap the result:
m = {'left_only': 'df1', 'right_only': 'df2', 'both': 'df1, df2'}
result = df1.merge(df2, on=['A'], how='outer', indicator='B')
result['B'] = result['B'].map(m)
result
A B
0 a df1, df2
1 b df1
2 c df2
Upvotes: 15