Reputation: 3689
I have a pandas DataFrame with a sets column:
import pandas as pd
df = pd.DataFrame({'group_var': [1,1,2,2], 'sets_var': [set([0, 1]), set([1, 2]), set([3, 4]), set([5, 6, 7])]})
df
group_var sets_var
0 1 {0, 1}
1 1 {1, 2}
2 2 {3, 4}
3 2 {5, 6, 7}
I wish to groupby
the group_var
and get the intersection of all corresponding sets of sets_var
, like so:
group_var sets_var
0 1 {1}
1 2 {}
or a Series like so:
sets_var
1 {1}
2 {}
How would I go about it in elegance? Performance is top priority.
Upvotes: 3
Views: 3669
Reputation: 402493
Use groupby
, agg
, and reduce using set.intersection
.
df.groupby('group_var', as_index=False).agg(lambda x: set.intersection(*x))
group_var sets_var
0 1 {1}
1 2 {}
If performance is absolutely important, we can try getting rid of the lambda
:
from functools import partial, reduce
import operator
p = partial(reduce, operator.and_)
df.groupby('group_var', as_index=False).agg(p)
group_var sets_var
0 1 {1}
1 2 {}
However, this only performs a pairwise intersection, so your mileage may vary.
Or, as a Series,
pd.Series({
k: set.intersection(*g.tolist())
for k, g in df.groupby('group_var')['sets_var']})
1 {1}
2 {}
dtype: object
Upvotes: 5