Reputation: 1533
I am making my baby steps with purrr and functional programming and I am probably drowning in a glass of water. Consider the list
zz<-list(structure(list(year = c(2000, 2001, 2002, 2003, 2000, 2001,
2002, 2003, 2000, 2001, 2002, 2003), tot_i = c(22393349.081,
23000574.372, 21682040.898, 21671102.853, 34361300.338, 35297814.942,
34745691.204, 35878883.117, 11967951.257, 12297240.57, 13063650.306,
14207780.264), relation = c("EU28-Algeria", "EU28-Algeria", "EU28-Algeria",
"EU28-Algeria", "World-Algeria", "World-Algeria", "World-Algeria",
"World-Algeria", "Extra EU28-Algeria", "Extra EU28-Algeria",
"Extra EU28-Algeria", "Extra EU28-Algeria"), g_rate = c(0.736046372770467,
0.0271163231905857, -0.0573261107603093, -0.000504474880914325,
0.614846575418334, 0.0272549232650638, -0.0156418673197543, 0.0326138831530727,
0.428272657063707, 0.0275142592018328, 0.0623237165799383, 0.0875811837579971
)), row.names = c(NA, -12L), class = c("tbl_df", "tbl", "data.frame"
)), structure(list(year = c(2000, 2001, 2002, 2003, 2000, 2001,
2002, 2003, 2000, 2001, 2002, 2003), tot_i = c(9233346.648, 7869288.171,
7271485.687, 6395999.102, 21393949.287, 19851236.26, 19449339.887,
16055014.309, 12160602.639, 11981948.089, 12177854.2, 9659015.207
), relation = c("EU28-Egypt", "EU28-Egypt", "EU28-Egypt", "EU28-Egypt",
"World-Egypt", "World-Egypt", "World-Egypt", "World-Egypt", "Extra EU28-Egypt",
"Extra EU28-Egypt", "Extra EU28-Egypt", "Extra EU28-Egypt"),
g_rate = c(0.0970653722744164, -0.147731751985664, -0.0759665259436081,
-0.120399959882366, 0.124744629514854, -0.0721097823643728,
-0.0202454077789513, -0.174521376957825, 0.146712116047648,
-0.0146912579338002, 0.0163501051368976, -0.206837670383671
)), row.names = c(NA, -12L), class = c("tbl_df", "tbl", "data.frame"
)))
I am capable of doing very simple stuff with maps for instance taking the iteratively the mean of a certain column
map(zz, function(x) mean(x$tot_i))
or filtering the values of the years
map(zz, function(x) filter(x, year==2000))
however, I bang my head against the wall as soon as I want to add a bit of complexity. For instance
1) I want to iteratively group the data in zz by relation and summarise them by taking the average of tot_i and
2) Given a list of years
ll<-list(c(2000, 2001), c(2001, 2003))
I would like to filter the two elements of the zz list according to the years listed in ll.
I would then have plenty of other operations to carry out on the data, but already understanding 1 and 2 would take me a long way from where I am stuck now.
Any suggestion is welcome.
Upvotes: 1
Views: 513
Reputation: 887531
As we are subsetting from corresponding elements of 'll', use map2
to loop over both the list
s, and filter
the rows based on the 'year' elements %in%
.y
map2(zz, ll, ~ .x %>%
filter(year %in% .y))
#[[1]]
# A tibble: 6 x 4
# year tot_i relation g_rate
# <dbl> <dbl> <chr> <dbl>
#1 2000 22393349. EU28-Algeria 0.736
#2 2001 23000574. EU28-Algeria 0.0271
#3 2000 34361300. World-Algeria 0.615
#4 2001 35297815. World-Algeria 0.0273
#5 2000 11967951. Extra EU28-Algeria 0.428
#6 2001 12297241. Extra EU28-Algeria 0.0275
#[[2]]
# A tibble: 6 x 4
# year tot_i relation g_rate
# <dbl> <dbl> <chr> <dbl>
#1 2001 7869288. EU28-Egypt -0.148
#2 2003 6395999. EU28-Egypt -0.120
#3 2001 19851236. World-Egypt -0.0721
#4 2003 16055014. World-Egypt -0.175
#5 2001 11981948. Extra EU28-Egypt -0.0147
#6 2003 9659015. Extra EU28-Egypt -0.207
If we use the anonymous function, then have two arguments instead of 1
map2(zz, ll, function(x, y) filter(x, year %in% y))
similar to the way we use Map
from base R
Map(function(x, y) subset(x, year %in% y), zz, ll)
Upvotes: 1