Reputation: 2120
I have this dataframe. It's information about license usage:
usuario feature fini ffin delta
0 USER-1 PROGRAM-1 2016-06-30 21:03:21 2016-06-30 21:03:34 00:00:13
2 USER-1 PROGRAM-1 2016-06-30 21:09:20 2016-06-30 21:09:32 00:00:12
4 USER-1 PROGRAM-1 2016-06-30 21:14:40 2016-06-30 21:15:34 00:00:54
6 USER-1 PROGRAM-1 2016-06-30 21:16:42 2016-06-30 21:17:24 00:00:42
8 USER-1 PROGRAM-1 2016-06-30 21:18:09 2016-06-30 21:18:21 00:00:12
Sorry for the fields in spanish, but you get the idea. fini
means fecha inicial (inital date) and ffin
fecha final (ending date), as you have guess delta is ffin-fini
So, I want to know how much time USER-1 has spent in whatever program he has been working (PROGRAM-1) in this case.
If I do a table['delta'].sum()
I get what I want, it says he used it 00:02:13.
Now suppose I have more users, more features, and I want to group them by days (maybe hours), to see how people are using their licenses
I tried the resample, but I really don't understand how it works. I saw there's a Grouper function but I don't have it installed.
Upvotes: 0
Views: 86
Reputation: 1261
The line below will help you group by user and date and hour (fyi. if you were to instead use df['fini'].dt.hour
it would sum up values for the same hour across multiple days):
df.groupby([df['usuario'], df['fini'].apply(lambda x: x.round('h'))]).delta.sum()
Applying this to an extended version of your example:
d = {
'usuario':['USER-1','USER-1','USER-1','USER-1','USER-1','USER-1','USER-1','USER-1','USER-1','USER-1','USER-2','USER-2'],
'feature':['PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-1','PROGRAM-2','PROGRAM-2','PROGRAM-1','PROGRAM-1'],
'fini':['2016-06-30 21:03:21','2016-06-30 21:09:20','2016-06-30 21:14:40','2016-06-30 21:16:42','2016-06-30 21:18:09', '2016-06-30 22:03:21','2016-06-30 22:09:20','2016-07-01 21:03:21','2016-07-01 22:09:20','2016-07-01 23:14:40','2016-06-30 17:16:42','2016-06-30 18:18:09'],
'ffin':['2016-06-30 21:03:34','2016-06-30 21:09:32','2016-06-30 21:15:34','2016-06-30 21:17:24','2016-06-30 21:18:21', '2016-06-30 22:04:02','2016-06-30 22:09:51','2016-07-01 21:03:43','2016-07-01 22:10:12','2016-07-01 23:15:03','2016-06-30 17:17:23','2016-06-30 18:18:19']
}
df = pd.DataFrame(data=d)
date_cols = ['fini', 'ffin']
for col in date_cols:
df[col] = pd.to_datetime(df[col])
df['delta'] = df['ffin'] - df['fini']
df.groupby([df['usuario'], df['fini'].apply(lambda x: x.round('h'))]).delta.sum()
Outputs the following:
usuario fini
USER-1 2016-06-30 21:00:00 00:02:13
2016-06-30 22:00:00 00:01:12
2016-07-01 21:00:00 00:00:22
2016-07-01 22:00:00 00:00:52
2016-07-01 23:00:00 00:00:23
USER-2 2016-06-30 17:00:00 00:00:41
2016-06-30 18:00:00 00:00:10
Name: delta, dtype: timedelta64[ns]
Also, if you wanted, adding feature to the groupby is trivial:
df.groupby([df['usuario'], df['feature'], df['fini'].apply(lambda x: x.round('h'))]).delta.sum()
Outputs:
usuario feature fini
USER-1 PROGRAM-1 2016-06-30 21:00:00 00:02:13
2016-06-30 22:00:00 00:01:12
2016-07-01 21:00:00 00:00:22
PROGRAM-2 2016-07-01 22:00:00 00:00:52
2016-07-01 23:00:00 00:00:23
USER-2 PROGRAM-1 2016-06-30 17:00:00 00:00:41
2016-06-30 18:00:00 00:00:10
Name: delta, dtype: timedelta64[ns]
Upvotes: 2
Reputation: 1052
This is code is grouping the data by usuario
and date (as provided infini
). If you want a different grouping scheme (e.g., based on date and hour), you can modify it accordingly:
import pandas as pd
df = pd.DataFrame({'usuario': ['USER-1']*5,
'feature': ['PROGRAM-1']*5,
'fini': ['2016-06-30 21:03:21',
'2016-06-30 21:09:20',
'2016-06-30 21:14:40',
'2016-07-30 21:16:42',
'2016-07-30 21:18:09'],
'ffin': ['2016-06-30 21:03:34',
'2016-06-30 21:09:32',
'2016-06-30 21:15:34',
'2016-07-30 21:17:24',
'2016-07-30 21:18:21'],
'delta': ['00:00:13',
'00:00:12',
'00:00:54',
'00:00:42',
'00:00:12']})
# proper formatting for columns
df.fini = pd.to_datetime(df.fini)
df.ffin = pd.to_datetime(df.ffin)
df.delta = pd.to_timedelta(df.delta)
print(df.groupby([df.usuario, df.fini.dt.date]).delta.sum())
#usuario fini
#USER-1 2016-06-30 00:01:19
# 2016-07-30 00:00:54
#Name: delta, dtype: timedelta64[ns]
Upvotes: 0