Reputation: 359
Let's say I have a very simple pandas dataframe, containing a single indexed column with "initial values". I want to read in a loop N other dataframes to fill a single "comparison" column, with matching indices.
For instance, with my inital dataframe as
Initial
0 a
1 b
2 c
3 d
and the following two dataframes to read in a loop
Comparison
0 e
1 f
Comparison
2 g
3 h
4 i <= note that this index doesn't exist in Initial so won't be matched
I would like to produce the following result
Initial Comparison
0 a e
1 b f
2 c g
3 d h
Using merge
, concat
or join
, I only ever seem to be able to create a new column for each iteration of the loop, filling the blanks with NaN
.
What's the most pandas-pythonic way of achieving this?
Below an example from the proposed duplicate solution:
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.array([['a'],['b'],['c'],['d']]), columns=['Initial'])
print df1
df2 = pd.DataFrame(np.array([['e'],['f']]), columns=['Compare'])
print df2
df3 = pd.DataFrame(np.array([[2,'g'],[3,'h'],[4,'i']]), columns=['','Compare'])
df3 = df3.set_index('')
print df3
print df1.merge(df2,left_index=True,right_index=True).merge(df3,left_index=True,right_index=True)
>>
Initial
0 a
1 b
2 c
3 d
Compare
0 e
1 f
Compare
2 g
3 h
4 i
Empty DataFrame
Columns: [Initial, Compare_x, Compare_y]
Index: []
Second edit: @W-B, the following seems to work, but it can't be the case that there isn't a simpler option using proper pandas methods. It also requires turning off warnings, which might be dangerous...
pd.options.mode.chained_assignment = None
df1["Compare"]=pd.Series()
for ind in df1.index.values:
if ind in df2.index.values:
df1["Compare"][ind]=df2.T[ind]["Compare"]
if ind in df3.index.values:
df1["Compare"][ind]=df3.T[ind]["Compare"]
print df1
>>
Initial Compare
0 a e
1 b f
2 c g
3 d h
Upvotes: 0
Views: 2733
Reputation: 323396
Ok , since Op need more info
Data input
import functools
df1 = pd.DataFrame(np.array([['a'],['b'],['c'],['d']]), columns=['Initial'])
df1['Compare']=np.nan
df2 = pd.DataFrame(np.array([['e'],['f']]), columns=['Compare'])
df3 = pd.DataFrame(np.array(['g','h','i']), columns=['Compare'],index=[2,3,4])
Solution
newdf=functools.reduce(lambda x,y: x.fillna(y),[df1,df2,df3])
newdf
Out[639]:
Initial Compare
0 a e
1 b f
2 c g
3 d h
Upvotes: 1