Reputation: 35
Dictionary looks like:
{'iphone': [12, 21666], 'a1': [6, 5859], 'J5': [15, 13862]}
Using this dictionary i want to create dataframe that looks like this:
name n1 n2
0 iphone 12 21666
1 a1 6 5859
2 J5 15 13862
Upvotes: 1
Views: 4972
Reputation: 507
Also you can just do this, if your dictionary name is d
:
df = pd.DataFrame(d).T.reset_index()
df.columns = ['name','n1','n2']
Upvotes: 2
Reputation: 134
a={'iphone': [12, 21666], 'a1': [6, 5859], 'J5': [15, 13862]}
df = pd.DataFrame(a).T
df.reset_index(inplace=True)
df.columns = ['name','n1','n2']
print(df)
output:
name n1 n2
0 iphone 12 21666
1 a1 6 5859
2 J5 15 13862
reset index is require step without it, it will take ['iphone','a1','J5'] as a index
Upvotes: 0
Reputation: 377
You can give a try like this.
df = pd.DataFrame({'iphone': [12, 21666], 'a1': [6, 5859], 'J5': [15, 13862]})
df.columns = ["name", "n1", "n2"]
print(df)
Upvotes: 0
Reputation: 862511
Use list comprehension with DataFrame
constructor:
d = {'iphone': [12, 21666], 'a1': [6, 5859], 'J5': [15, 13862]}
df = pd.DataFrame([([k] + v) for k, v in d.items()], columns=['name','n1','n2'])
#alternative
#df = pd.DataFrame([(k, *v) for k, v in d.items()], columns=['name','n1','n2'])
print (df)
name n1 n2
0 iphone 12 21666
1 a1 6 5859
2 J5 15 13862
General solution for list with all lenghts, not only 2
:
df = pd.DataFrame([(k, *v) for k, v in d.items()])
#python 3.6+ with f-strings
df.columns = ['name'] + [f'n{x}' for x in df.columns[1:]]
#python bellow
#df.columns = ['name'] + ['n{}'.format(x) for x in df.columns[1:]]
print (df)
name n1 n2
0 iphone 12 21666
1 a1 6 5859
2 J5 15 13862
Or:
df = (pd.DataFrame.from_dict(d, orient='index')
.rename(columns=lambda x: x+1)
.add_prefix('n')
.rename_axis('name')
.reset_index())
print (df)
name n1 n2
0 iphone 12 21666
1 a1 6 5859
2 J5 15 13862
Upvotes: 4