Reputation: 399
I have a query that is taking an embarrassingly long time. ~7 minutes embarrassing. I would really appreciate some help. Missing indexes? Rewrite the query? All of the above?
Many thanks
mysql Ver 14.14 Distrib 5.7.25, for Linux (x86_64)
The query looks like:
SELECT COUNT(*) AS count_all, name
FROM api_events ae
INNER JOIN products p on p.token=ae.product_token
WHERE (ae.created_at > '2019-01-21 12:16:53.853732')
GROUP BY name
Here are the two table definitions
api_events has ~31 million records
CREATE TABLE `api_events` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`api_name` varchar(200) NOT NULL,
`hostname` varchar(200) NOT NULL,
`controller_action` varchar(2000) NOT NULL,
`duration` decimal(12,5) NOT NULL DEFAULT '0.00000',
`view` decimal(12,5) NOT NULL DEFAULT '0.00000',
`db` decimal(12,5) NOT NULL DEFAULT '0.00000',
`created_at` datetime NOT NULL,
`updated_at` datetime NOT NULL,
`product_token` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `product_token` (`product_token`)
) ENGINE=InnoDB AUTO_INCREMENT=64851218 DEFAULT CHARSET=latin1;
and products has only 12 records
CREATE TABLE `products` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`code` varchar(30) NOT NULL,
`name` varchar(100) NOT NULL,
`description` varchar(2000) NOT NULL,
`token` varchar(50) NOT NULL,
`created_at` datetime NOT NULL,
`updated_at` datetime NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=19 DEFAULT CHARSET=latin1;
Upvotes: 0
Views: 82
Reputation: 142540
For the query as stated, you needed
api_events: INDEX(created_at, product_token)
products: INDEX(token, name)
Because the WHERE
mentions api_events, the Optimizer is likely to start with that table. created_at
is in the WHERE
, so the index starts with that, even though starting with a 'range' is usually wrong. In this case, the pair is "covering".
Then, INDEX(token, name)
is also "covering".
"Covering" indexes give a small, but widely varying, amount of performance improvement.
Upvotes: 1
Reputation: 133400
You could improve the join performance adding index
create index idx1 on api_events(product_token, created_at);
create index idx2 on products(token);
You could also trying inverting the columns ofr api_events
create index idx1 on api_events(created_at, product_token);
and trying add redundancy to product index
create index idx2 on products(token, name);
Upvotes: 1
Reputation: 108510
It seems like the criteria on created_at
is very selective (looking at only the past 7 days?). That's crying out to explore an index with created_at
as a leading column.
The query is also referencing the product_token
column from the same table, so we can include that column in the index, to make it a covering index.
api_events_IX ON api_events ( created_at, product_token )
Using that index, we can probably avoid looking at the vast majority of the 31 million rows, and quickly narrow in on the subset of rows we actually need to look at.
Using the index, the query will still need a "Using filesort" operation to satisfy the GROUP BY.
(My guess here is that the join to the 12 rows in product doesn't exclude a lot of rows... that on the vast majority of rows in api_event
the product_token
refers to a row that exists in product
.
Use MySQL EXPLAIN
to see the query execution plan.
A further possible refinement (to test the performance of) would be to do some of the aggregation in an inline view:
SELECT SUM(s.count_all) AS count_all
, p.name
FROM ( SELECT COUNT(*) AS count_all
, ae.product_token
FROM api_events ae
WHERE ae.created_at > '2019-01-21 12:16:53.853732'
GROUP
BY ae.product_token
) s
JOIN products p
ON p.token = s.product_token
GROUP
BY p.name
If the assumption about product_token
is misinformed, if there are lots of rows in api_event
that have product_token
values that don't reference a row in product
... we might take a different tack ...
Upvotes: 0
Reputation: 1271151
What happens if you group by the token instead of the name
?
SELECT ae.product_token, COUNT(*) AS count_all
FROM api_events ae
WHERE ae.created_at > '2019-01-21 12:16:53.853732')
GROUP BY ae.product_token;
For this query, an index on api_events(created_at, product_token)
will probably help.
If this is faster, then you can bring in the name using a subquery.
Upvotes: 0