Reputation: 8067
When using the Python SDK to start a SageMaker hyperparameter tuning job using one of the built-in algorithms (in this case, the Image Classifier) with the following code:
# [...] Some lines elided for brevity
from sagemaker.tuner import HyperparameterTuner, IntegerParameter, CategoricalParameter, ContinuousParameter
hyperparameter_ranges = {'optimizer': CategoricalParameter(['sgd', 'adam']),
'learning_rate': ContinuousParameter(0.0001, 0.2),
'mini_batch_size': IntegerParameter(2, 30),}
objective_metric_name = 'validation:accuracy'
tuner = HyperparameterTuner(image_classifier,
objective_metric_name,
hyperparameter_ranges,
max_jobs=50,
max_parallel_jobs=3)
tuner.fit(inputs=data_channels, logs=True)
The job fails and I get this error when checking on the job status in the SageMaker web console:
ClientError: Additional hyperparameters are not allowed (u'sagemaker_estimator_module', u'sagemaker_estimator_class_name' were unexpected) (caused by ValidationError)
Caused by: Additional properties are not allowed (u'sagemaker_estimator_module', u'sagemaker_estimator_class_name' were unexpected)
Failed validating u'additionalProperties' in schema: {u'$schema': u'http://json-schema.org/schema#', u'additionalProperties': False, u'definitions': {u'boolean_0_1': {u'oneOf': [{u'enum': [u'0', u'1'], u'type': u'string'}, {u'enum': [0, 1], u'type': u'number'}]}, u'boolean_true_false_0_1': {u'oneOf': [{u'enum': [u'true', u'false',
I'm not explicitly passing the sagemaker_estimator_module
or sagemaker_estimator_class_name
properties anywhere, so I'm not sure why it's returning this error.
What's the right way to start this tuning job?
Upvotes: 3
Views: 997
Reputation: 8067
I found the answer via this post translated from Japanese.
When starting hyperparameter tuning jobs using the built-in algorithms in the Python SDK, you need to explicitly pass include_cls_metadata=False
as a keyword argument to tuner.fit()
like this:
tuner.fit(inputs=data_channels, logs=True, include_cls_metadata=False)
Upvotes: 2